Natural Peptides (natural + peptide)

Distribution by Scientific Domains


Selected Abstracts


Angiotensin I-Converting Enzyme And Metabolism Of The Haematological Peptide N -Acetyl-Seryl-Aspartyl-Lysyl-Proline

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 12 2001
Michel Azizi
SUMMARY 1. Angiotensin I-converting enzyme (ACE) has two homologous active N- and C-terminal domains and displays activity towards a broad range of substrates. The tetrapeptide N -acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) has been shown to be hydrolysed in vitro by ACE and to be a preferential substrate for its N-terminal active site. This peptide reversibly prevents the recruitment of pluripotent haematopoietic stem cells and normal early progenitors into the S-phase. 2. Angiotensin I-converting enzyme inhibitors, given as a single dose to normal subjects or during long-term treatment in hypertensive patients, result in plasma AcSDKP levels five- to six-fold higher and urine concentrations 40-fold higher than those of control subjects and/or patients. Thus, AcSDKP is a natural peptide hydrolysed by the N-terminal domain of ACE in vivo. In addition, ACE may be implicated in the process of haematopoietic stem cell regulation by permanently degrading this natural circulating inhibitor of cell entry into the S-phase. 3. Besides hydrolysis by ACE, the second very effective mechanism by which AcSDKP is cleared from plasma is glomerular filtration. Because of its high sensitivity and specificity, the measurement of AcSDKP in plasma and urine provides a valuable tool in screening specific inhibitors of the N-terminal domain of ACE and in monitoring ACE inhibition during chronic treatment. 4. The long-term consequences of AcSDKP accumulation are not known. During chronic ACE inhibition in rats, AcSDKP levels slightly increase in organs with high ACE content (kidneys, lungs). To significantly increase its concentration in target haematopoietic organs (the extracellular fraction of bone marrow), AcSDKP has to be infused on top of a captopril-based treatment. 5. A selective inhibitor of the N-domain of ACE in vitro and in vivo has been identified recently. The phosphinic peptide RXP 407 does not interfere with blood pressure regulation, but does increase, dose dependently, plasma concentrations of AcSDKP in mice, in contrast with lisinopril, which affects the metabolism of both AcSDKP and angiotensin I. N-Terminal-selective ACE inhibitors may be used to selectively control AcSDKP metabolism in target haematopoietic organs. This new therapeutic strategy may be of value for protecting haematopoietic cells from the toxicity of cancer chemotherapy. [source]


Bioinformatics-based discovery and identification of new biologically active peptides for GPCR deorphanization,

JOURNAL OF PEPTIDE SCIENCE, Issue 9 2007
Jean Colette
Abstract Owing to their involvement in many physiological and pathological processes, G-protein-coupled receptors (GPCRs) are interesting targets for drug development. Approximately, 100 endoGPCRs lack their natural ligands and remain orphan (oGPCRs). Consequently, oGPCR deorphanization appears a promising research field for the development of new therapeutics. On the basis of the knowledge of currently known GPCR/ligand couples, some oGPCRs may be targeted by peptides. However, to find new drugs for GPCRs, Genepep has developed a dedicated bioinformatics platform to screen transcriptomic databases for the prediction of new GPCR ligands. The peptide lists generated include specific data, such as chemical and physical properties, the occurrence of post-translational modifications (PTMs) and an annotation referring to the location and expression level of the related putative genes. This information system allows a selection through series of biological criteria of ,10 000 natural peptides including already known GPCR ligands and potential new candidates for GPCR deorphanization. The most promising peptides for functional assay screening and future development as therapeutic agents are under evaluation. Copyright 2007 European Peptide Society and John Wiley & Sons, Ltd. [source]


Hydrophobic peptides: novel regulators within bacterial membrane

MOLECULAR MICROBIOLOGY, Issue 1 2009
Eric Alix
Summary Identification of short coding sequences is challenging, both experimentally and in silico, and functional natural peptides (< 50 amino acids) have to a large extent been overlooked in Gram-negative bacteria. Recent results have converged to highlight the role of hydrophobic peptides that form a novel class of active molecules in Escherichia coli and Salmonella enterica serovar Typhimurium. These peptides can play a regulatory role by interacting with protein partners at the inner membrane and by modulating protein partner activity or stability. Genome-wide analyses in both bacterial species have identified several conserved short open reading frames encoding a single transmembrane segment. We discuss the known and predicted membrane-associated peptides and the tools for their identification. Besides the identification of novel regulatory networks, characterization of peptides with a single transmembrane helix segment and proteins that interact with them provides a powerful opportunity to study interactions between alpha helices within biological membranes. In addition, some bioactive membrane peptides could provide a basis for engineering membrane protein antagonists. [source]


Tandem electrospray mass spectrometric studies of proton and sodium ion adducts of neutral peptides with modified N- and C-termini: synthetic model peptides and microheterogeneous peptaibol antibiotics

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 4 2006
Varatharajan Sabareesh
The fragmentations of [M+H]+ and [M+Na]+ adducts of neutral peptides with blocked N- and C-termini have been investigated using electrospray ion trap mass spectrometry. The N-termini of these synthetically designed peptides are blocked with a tertiarybutyloxycarbonyl (Boc) group, and the C-termini are esterified. These peptides do not possess side chains that are capable of complexation and hence the backbone amide units are the sole sites of protonation and metallation. The cleavage patterns of the protonated peptides are strikingly different from those of sodium ion adducts. While the loss of the N-terminal blocking group occurs quite readily in the case of MS/MS of [M+Na]+, the cleavage of the C-terminal methoxy group seems to be a facile process in the case of MS/MS of [M+H]+. Fragmentation of the protonated adducts yields only bn ions, while yn and an ions are predominantly formed from the fragmentation of sodium ion adducts. The an ions arising from the fragmentation of [M+Na]+ lack the N-terminal Boc group (and are here termed an* ions). MS/MS of [M+Na]+ species also yields bn ions of substantially lower intensities that lack the N-terminal Boc group (bn*). A similar distinction between the fragmentation patterns of proton and sodium ion adducts is observed in the case of peptides possessing an N-terminal acetyl group. An example of the fragmentation of the H+ and Na+ adducts of a naturally occurring peptaibol from a Trichoderma species confirms that fragmentation of these two ionized species yields complementary information, useful in sequencing natural peptides. Inspection of the isotopic pattern of bn ions derived from [M+H]+ adducts of peptaibols provided insights into the sequences of microheterogeneous samples. This study reveals that the combined use of protonated and sodium ion adducts should prove useful in de novo sequencing of peptides, particularly of naturally occurring neutral peptides with modified N- and C-termini, for example, peptaibols. Copyright 2006 John Wiley & Sons, Ltd. [source]


Evaluation of the conformational propensities of peptide isosteres as a basis for selecting bioactive pseudopeptides

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 6 2001
S. Gupta
Abstract: Our aim was to compare the repertoires of conformers formed by the model zwitterionic peptides AA and AAA in aqueous solution with the conformational profiles of a range of their peptide isosteres, so as to facilitate selection of isosteres for synthesis and testing as biologically stable surrogates of bioactive di- and tripeptides. Comparisons were based upon the results of conformational analysis using a random search approach implemented within the SYBYL molecular modelling package, using zwitterionic molecules, simulated aqueous solvation using a dielectric constant of 80 and allowing all torsions to vary. For each compound, individual conformers were grouped on the basis of specific combinations of psi, phi and omega torsions and, using their energies, the aggregated percentage for each group was calculated using a Boltzmann distribution and displayed using a 3D pseudo Ramachandran plot relating percentage conformer to psi and phi torsions. Retroamide, N -methylamide and thioamide isosteres showed the best match to natural peptides and to the molecular recognition parameters defined for substrates of peptide transporters. The results should aid rational design of therapeutic agents in various areas, e.g. oral delivery of drugs by peptide transporters and of peptidase inhibitors. This approach may usefully be applied to various biochemical and pharmaceutical topics. [source]