Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Name

  • author name
  • brand name
  • common name
  • different name
  • first name
  • new name
  • proper name
  • same name
  • trade name

  • Terms modified by Name

  • name change
  • name treatment

  • Selected Abstracts

    Nitric oxide bioavailability modulates the dynamics of microvascular oxygen exchange during recovery from contractions

    ACTA PHYSIOLOGICA, Issue 2 2010
    D. M. Hirai
    Abstract Aim:, Lowered microvascular PO2 (PO2mv) during the exercise off-transient likely impairs muscle metabolic recovery and limits the capacity to perform repetitive tasks. The current investigation explored the impact of altered nitric oxide (NO) bioavailability on PO2mv during recovery from contractions in healthy skeletal muscle. We hypothesized that increased NO bioavailability (sodium nitroprusside: SNP) would enhance PO2mv and speed its recovery kinetics while decreased NO bioavailability (l -nitro arginine methyl ester: l -NAME) would reduce PO2mv and slow its recovery kinetics. Methods:,PO2mv was measured by phosphorescence quenching during transitions (rest,1 Hz twitch-contractions for 3 min,recovery) in the spinotrapezius muscle of Sprague,Dawley rats under SNP (300 ,m), Krebs-Henseleit (Control) and l -NAME (1.5 mm) superfusion conditions. Results:, Relative to recovery in Control, SNP resulted in greater overall microvascular oxygenation as assessed by the area under the PO2mv curve (PO2 AREA; Control: 3471 ± 292 mmHg s; SNP: 4307 ± 282 mmHg s; P < 0.05) and faster off-kinetics as evidenced by the mean response time (MRToff; Control: 60.2 ± 6.9 s; SNP: 34.8 ± 5.7 s; P < 0.05), whereas l -NAME produced lower PO2 AREA (2339 ± 444 mmHg s; P < 0.05) and slower MRToff (86.6 ± 14.5 s; P < 0.05). Conclusion:, NO bioavailability plays a key role in determining the matching of O2 delivery-to-O2 uptake and thus the upstream O2 pressure driving capillary-myocyte O2 flux (i.e. PO2mv) following cessation of contractions in healthy skeletal muscle. Additionally, these data support a mechanistic link between reduced NO bioavailability and prolonged muscle metabolic recovery commonly observed in ageing and diseased populations. [source]

    Combined effect of IL-17 and blockade of nitric oxide biosynthesis on haematopoiesis in mice

    ACTA PHYSIOLOGICA, Issue 1 2010
    A. Krsti
    Abstract Aim:, The study was undertaken to extend our investigation concerning both the in vivo activity of interleukin (IL)-17 and the specific role of nitric oxide (NO) in IL-17-induced effects in the process of haematopoiesis. Methods:, CBA mice were simultaneously treated with IL-17 and/or nitric oxide synthase (NOS) inhibitor, l -NAME, for 5 days and changes within various haematopoietic cell lineages in bone marrow, spleen and peripheral blood were analysed. Results:, Findings showed that administration of both IL-17 and l -NAME stimulated increase in net haematopoiesis in normal mice. IL-17-enhanced myelopoiesis was characterized by stimulation of both femoral and splenic haematopoietic progenitor cells and morphologically recognizable granulocytes. Additionally, IL-17 induced alterations in the frequency of erythroid progenitor cells in both bone marrow and spleen, accompanied with their mobilization to the peripheral blood. As a consequence of these changes in the erythroid cell compartments, significant reticulocytosis was observed, which evidenced that in IL-17-treated mice effective erythropoiesis occurred. Exposure of mice to NOS inhibitor also increased the number of both granulocyte-macrophage and erythroid progenitors in bone marrow and spleens, and these alterations were followed by the mobilization of erythroid progenitors and elevated content of reticulocytes in peripheral blood. The specific role of NO in IL-17-induced haematopoiesis was demonstrated only in the IL-17-reducing effect on bone marrow late stage erythroid progenitors, CFU-E. Conclusion:, The results demonstrated the involvement of both IL-17 and NO in the regulation of haematopoietic cell activity in various haematopoietic compartments. They further suggest that IL-17 effects are differentially mediated depending on the haematopoietic microenvironments. [source]

    Systemic nitric oxide clamping in normal humans guided by total peripheral resistance

    ACTA PHYSIOLOGICA, Issue 2 2010
    J. A. Simonsen
    Abstract Aim:, We wanted to stabilize the availability of nitric oxide (NO) at levels compatible with normal systemic haemodynamics to provide a model for studies of complex regulations in the absence of changes in NO levels. Methods:, Normal volunteers (23,28 years) were infused i.v. with the nitric oxide synthase (NOS) inhibitor NG -nitro- l -arginine methyl ester (l -NAME) at 0.5 mg kg,1 h,1. One hour later, the NO donor sodium nitroprusside (SNP) was co-infused in doses eliminating the haemodynamic effects of l -NAME. Haemodynamic measurements included blood pressure (MABP) and cardiac output (CO) by impedance cardiography. Results:,l -NAME increased MABP and total peripheral resistance (TPR, 1.02 ± 0.05 to 1.36 ± 0.07 mmHg s mL,1, mean ± SEM, P < 0.001). With SNP, TPR fell to a stable value slightly below control (0.92 ± 0.05 mmHg s mL,1, P < 0.05). CO decreased with l -NAME (5.8 ± 0.3 to 4.7 ± 0.3 L min,1, P < 0.01) and returned to control when SNP was added (6.0 ± 0.3 L min,1). A decrease in plasma noradrenaline (42%, P < 0.01) during l -NAME administration was completely reversed by SNP. Plasma renin activity decreased during l -NAME administration and returned towards normal after addition of SNP. In contrast, plasma aldosterone was increased by l -NAME and remained elevated. Conclusions:, Concomitant NOS inhibition and NO donor administration can be adjusted to maintain TPR at control level for hours. This approach may be useful in protocols in which stabilization of the peripheral supply of NO is required. However, the dissociation between renin and aldosterone secretion needs further investigation. [source]

    Enhanced pulmonary expression of the TrkB neurotrophin receptor in hypoxic rats is associated with increased acetylcholine-induced airway contractility

    ACTA PHYSIOLOGICA, Issue 3 2009
    L. K. Sciesielski
    Abstract Aim:, We have recently reported that hypoxia stimulates transcription of the TrkB neurotrophin receptor in cultured cells via stabilization of hypoxia-inducible factor-1,. Here we investigated whether the expression of TrkB and other neurotrophin receptors is oxygen-sensitive also in vivo, and explored the functional consequences of an oxygen-regulated TrkB expression. Methods:, Rats were exposed either to 21% O2 or 8% O2 for 6 h and TrkB was analysed by reverse transcription real-time PCR, in situ mRNA hybridization, and immunological techniques. The importance of the brain-derived neurotrophic factor (BDNF)-TrkB pathway in the control of mechanical airway function was assessed on isolated tracheal segments from normoxic and hypoxic rats. Results:,TrkB transcripts were increased approx. 15-fold in the lungs of hypoxic rats, and the respiratory epithelium was identified as the site of enhanced TrkB expression in hypoxia. The TrkB ligand, BDNF, significantly increased the contractile response to acetylcholine (ACh) of isolated tracheal segments from hypoxic but not from normoxic rats. This effect of BDNF was prevented by pre-incubation of the tissue specimens with the tyrosine kinase inhibitor K252a and by mechanical removal of the TrkB containing airway epithelium. Likewise, the nitric oxide (NO) synthase inhibitor l -NAME abrogated the influence of BDNF on ACh-induced contractions of isolated tracheal segments from hypoxic rats. Conclusion:, These results demonstrate that systemic hypoxia stimulates expression of the TrkB neurotrophin receptor in the airway epithelium. Furthermore, activation of TrkB signalling by BDNF in hypoxia enhances mechanical airway contractility to ACh through a mechanism that requires NO. [source]

    B2 kinin receptors mediate the Indian red scorpion venom-induced augmentation of visceral reflexes via the nitric oxide cyclic guanosine monophosphate pathway

    ACTA PHYSIOLOGICA, Issue 4 2009
    S. Kanoo
    Abstract Aim:, This study was performed to delineate the kinin (receptor)-dependent pathways in the Indian red scorpion (Mesobuthus tamulus; MBT) venom-induced pulmonary oedema as well as the augmentation of cardio-pulmonary reflexes evoked by phenyldiguanide (PDG). Methods:, In urethane-anaesthetized adult rats, the effect of venom on the PDG reflex responses (blood pressure, heart rate and respiration rate) and the pulmonary water content was ascertained using various antagonists(des- Arg, B1 receptor antagonist; Hoe 140, B2 receptor antagonist; N, -nitro- l -arginine methyl ester (l -NAME), nitric oxide (NO) synthase inhibitor; methylene blue, soluble guanylate cyclase inhibitor; and glibenclamide, K+ATP channel blocker). The effect of phosphodiesterase V inhibitor (sildenafil citrate) on the reflex response and the pulmonary water content was also examined and compared with venom-induced responses. Results:, Intravenous injection of PDG (10 ,g kg,1) evoked apnoea, bradycardia and hypotension lasting >60 s. Exposure to MBT venom (100 ,g kg,1) for 30 min augmented the PDG reflex responses by two times and increased the pulmonary water content, significantly. Hoe 140 blocked the venom-induced responses (augmentation of PDG reflex and increased pulmonary water content) whereas des-Arg did not. l -NAME, methylene blue or glibenclamide also blocked the venom-induced responses. Furthermore, sildenafil citrate (that increases cGMP levels) produced augmentation of PDG reflex response and increased the pulmonary water content as seen with venom. Conclusion:, The results indicate that venom-induced responses involve B2 kinin receptors via the NO-dependent guanylate cyclase-cGMP pathway involving K+ATP channels. [source]

    Role of neuronal nitric oxide synthase in response to hypertonic saline loading in rats

    ACTA PHYSIOLOGICA, Issue 4 2004
    R. Wangensteen
    Abstract Aims:, This study analyses the influence of neuronal nitric oxide synthase (nNOS) blockade with 7-nitroindazole (7NI) on the haemodynamic and renal response to a hypertonic saline load (HSL). We also evaluated the effects of non-specific NOS inhibitor N, -nitro- l -arginine methyl ester (l -NAME). Methods:, The following groups were used: controls, rats treated with 7NI at 0.5 or 5 mg kg,1, and rats treated with l -NAME at 0.5 or 5 mg kg,1. A further five groups received an isotonic saline load (ISL). Results:, Mean arterial pressure (MAP) was significantly increased in control rats after HSL. MAP was further increased in both 7NI-treated groups, and the l -NAME groups showed marked dose-related pressor responses. During ISL, MAP was only significantly increased in the group treated with 5 mg kg,1 of l -NAME. The pressure,natriuresis relationship during the experimental period after the HSL was reduced in the 7NI group treated with 5 mg kg,1 and severely attenuated in both l -NAME groups. The increase in plasma sodium was significantly greater after the HSL in both 7NI groups and both l -NAME groups compared with controls. Conclusions:, The present results suggest that nNOS and other NOS isozymes play a counter-regulatory role in the pressor response to HSL. Moreover, the blockade of nNOS with the higher dose of 7NI produces a blunted pressure,natriuresis relationship in response to the HSL. Finally, it is concluded that nNOS participates in the homeostatic cardiovascular and renal response to hypertonic saline loading by attenuating the blood pressure increase and hypernatremia, and facilitating natriuresis. [source]

    Nitric oxide counteracts angiotensin II induced contraction in efferent arterioles in mice

    ACTA PHYSIOLOGICA, Issue 4 2004
    A. Patzak
    Abstract Aim:, Efferent arterioles (Ef) are one of the final control elements in glomerular haemodynamics. The influence of nitric oxide (NO) on Ef remains ambiguous. Methods:, To test the hypothesis that endothelial NO plays an important role in this context, afferent arterioles (Af) and Ef of wild-type mice (WT), and Ef of mice lacking the endothelial NO synthetase [eNOS(,/,)] were perfused. Perfusion was performed in Ef via Af (orthograde) as well as from the distal end of Ef (retrograde), which provides an estimate for the importance of substances derived from the glomerulus. Angiotensin II (Ang II) was added in doses ranging from 10,12 to 10,6 mol L,1 to the bath solution. Results:, Ang II reduced the luminal diameter of Af to 68 ± 7 and in Ef to 55 ± 8% during orthograde, and to 35 ± 6% during retrograde perfusion (10,6 mol L,1 Ang II) in WT. Pre-treatment with NG -Nitro- l -arginine-methylester (l -NAME) (10,4 mol L,1) increased the Ang II sensitivity in retrograde (17 ± 9%) and orthograde perfused Ef (19 ± 9%). The Ang II sensitivity was enhanced in eNOS(,/,) mice compared with WT, too. Already at a dose of Ang II 10,9 mol L,1, luminal diameters diminished to 8 ± 7 and 7 ± 4%. Conclusion:, The increased Ang II sensitivity during l -NAME pre-treatment and in eNOS(,/,) mice indicates a strong counteraction of endothelial derived NO on Ang II induced contraction in Ef. Moreover, Ef are similarly sensitive to Ang II during either retrograde or orthograde perfusion in the absence of NO effects, suggesting that NO mediates, at least in part, the action of potential vasodilatory substances from the glomerulus. [source]


    Y. H. CHEUNG
    First page of article [source]


    ADDICTION, Issue 6 2009
    No abstract is available for this article. [source]

    Role of Nitric Oxide in Pentylenetetrazol-Induced Seizures: Age-Dependent Effects in the Immature Rat

    EPILEPSIA, Issue 4 2000
    Anne Pereira de Vasconcelos
    Summary: Purpose: Seizure susceptibility and consequences are highly age dependent. To understand the pathophysiologic mechanisms involved in seizures and their consequences during development, we investigated the role of nitric oxide (NO) in severe pentylenetetrazol (PTZ)-induced seizures in immature rats. Methods: Four cortical electrodes were implanted in 10-day-old (P10) and 21-day-old (P21) rats, and seizures were induced on the following day by repetitive injections of subconvulsive doses of PTZ. The effects of NG -nitro- l -arginine methyl ester (l -NAME; 10 mg/kg) and 7-nitroindazole (7NI; 40 mg/kg), two NO synthase (NOS) inhibitors, and l -arginine (l -arg; 300 mg/kg), the NOS substrate, were evaluated regarding the mean PTZ dose, seizure type and duration, and mortality rate. Results: At P10, the postseizure mortality rate increased from 18,29% for the rats receiving PTZ only to 100% and 89% for the rats receiving l -NAME and 7NI, respectively; whereas l -arg had no effect. Conversely, at P21, NOS inhibitors did not affect the 82,89% mortality rate induced by PTZ alone, whereas l -arg decreased the mortality rate to 29%. In addition, all NO-related drugs increased the duration of ictal activity at P10, whereas at P21, L -arg and L -NAME affected the first seizure type, producing clonic seizures with L -arg and tonic seizures with L -NAME. Conclusions: The relative natural protection of very immature rats (P10) against PTZ-induced deaths could be linked to a high availability of L -arg and, hence, endogenous NO. At P21, the modulation of seizure type by NO-related compounds may be related to the maturation of the brain circuitry, in particular the forebrain, which is involved in the expression of clonic seizures. [source]

    Nitric oxide synthase inhibition in Thoroughbred horses augments O2 extraction at rest and submaximal exercise, but not during short-term maximal exercise

    Summary Reason for performing study: Work is required to establish the role of endogenous nitric oxide (NO) in metabolism of resting and exercising horses. Objectives: To examine the effects of NO synthase inhibition on O2 extraction and anaerobic metabolism at rest, and during submaximal and maximal exertion. Methods: Placebo and NO synthase inhibition (with N,-nitro-L-arginine methyl ester [l -NAME] administered at 20 mg/kg bwt i.v.) studies were performed in random order, 7 days apart on 7 healthy, exercise-trained Thoroughbred horses at rest and during incremental exercise leading to 120 sec of maximal exertion at 14 m/sec on a 3.5% uphill grade. Results: At rest, NO synthase inhibition significantly augmented the arterial to mixed-venous blood O2 content gradient and O2 extraction as mixed-venous blood O2 tension and saturation decreased significantly. While NO synthase inhibition did not affect arterial blood-gas tensions in exercising horses, the exercise-induced increment in haemoglobin concentration and arterial O2 content was attenuated. In the l -NAME study, during submaximal exercise, mixed-venous blood O2 tension and haemoglobin-O2 saturation decreased to a greater extent causing O2 extraction to increase significantly. During maximal exertion, arterial hypoxaemia, desaturation of haemoglobin and hypercapnia of a similar magnitude developed in both treatments. Also, the changes in mixed-venous blood O2 tension and haemoglobin-O2 saturation, arterial to mixed-venous blood O2 content gradient, O2 extraction and markers of anaerobic metabolism (lactate and ammonia production, and metabolic acidosis) were not different from those in the placebo study. Conclusion: Endogenous NO production augments O2 extraction at rest and during submaximal exertion, but not the during short-term maximal exercise. Also, NO synthase inhibition does not affect anaerobic metabolism at rest or during exertion. Potential relevance: It is unlikely that endogenous NO release modifies aerobic or anaerobic metabolism in horses performing short-term maximal exertion. [source]

    A 4-trifluoromethyl derivative of salicylate, triflusal, stimulates nitric oxide production by human neutrophils: role in platelet function

    De Miguel
    Background The thrombotic process is a multicellular phenomenon in which not only platelets but also neutrophils are involved. Recent in vitro studies performed in our laboratory have demonstrated that triflusal, a 4-trifluoromethyl derivative of salicylate, reduced platelet aggregation not only by inhibiting thromboxane A2 production but also by stimulating nitric oxide (NO) generation by neutrophils. The aim of the present study was to evaluate whether oral treatment of healthy volunteers with triflusal could modify the ability of their neutrophils to produce NO and to test the role of the NO released by neutrophils in the modulation of ADP-induced platelet aggregation and ,-granule secretion. Methods The study was performed in 12 healthy volunteers who were orally treated with triflusal (600 mg day,1) for 5 days. Flow cytometric detection of platelet surface expression of P-selectin was used as a measure of the ability of platelets to release the contents of their ,-granules. Results After treatment with triflusal, there was an increase in NO production by neutrophils and an increase in endothelial nitric oxide synthase (eNOS) protein expression in neutrophils. A potentiation of the inhibition of platelet aggregation by neutrophils was reversed by incubating neutrophils with both an l -arginine antagonist, NG -nitro- l -arginine methyl ester ( l -NAME) and an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5 tetramethylimidazoline 1-oxyl 3-oxide (C-PTIO). A slight decrease in P-selectin surface expression on platelets was found which was not modified by the presence of neutrophils and therefore by the neutrophil-derived NO. Exogenous NO released by sodium nitroprusside dose-dependently inhibited both ADP-stimulated ,-granule secretion and platelet aggregation. Therefore, platelet aggregation showed a greater sensitivity to be inhibited by exogenous NO than P-selectin expression. Conclusion Oral treatment of healthy volunteers with triflusal stimulated NO production and eNOS protein expression in their neutrophils. After triflusal treatment, the neutrophils demonstrated a higher ability to prevent ADP-induced platelet aggregation. However, the neutrophils and the endogenous NO generated by them failed to modify P-selectin expression in ADP-activated platelets. [source]

    Effect of nitric oxide and NO synthase inhibition on nonquantal acetylcholine release in the rat diaphragm

    M. R. Mukhtarov
    Abstract After anticholinesterase treatment, the postsynaptic muscle membrane is depolarized by about 5 mV due to nonquantal release of acetylcholine (ACh) from the motor nerve terminal. This can be demonstrated by the hyperpolarization produced by the addition of curare (H-effect). The magnitude of the H-effect was decreased significantly to 3 mV when the nitric oxide (NO) donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) were applied to the muscle, or when NO production was elevated by adding l -arginine, but not d -arginine, as a substrate. The H-effect was increased to 8,9 mV by inhibition of NO synthase by l -nitroarginine methylester ( l -NAME), or by guanylyl cyclase inhibition by methylene blue and 1H-[1,2,4]oxidiazolo[4,3-a]quinoxalin-1-one (ODQ). ODQ increased the H-effect to 7.3 ± 0.2 mV and diminished the SNP-induced decrease of the H-effect when applied together with SNP. The effects of NO donors and l -arginine were eliminated by adding reduced haemoglobin, an extracellular NO scavenger. The present results, together with earlier evidence for the presence of NO synthase in muscle fibres, indicate that nonquantal release of ACh is modulated by NO production in the postsynaptic cell. [source]

    Central nitric oxide blocks vasopressin, oxytocin and atrial natriuretic peptide release and antidiuretic and natriuretic responses induced by central angiotensin II in conscious rats

    Wagner Luis Reis
    The presence of nitric oxide synthase (NOS), the enzyme that catalyses the formation of nitric oxide (NO), in the circumventricular organs and magnocellular neurones suggests an important role of NO in the modulation of vasopressin (AVP) and oxytocin (OT) release. Intracerebroventricular (i.c.v.) injection of angiotensin II (Ang II) stimulates the release of AVP, OT and atrial natriuretic peptide (ANP), with the resultant antidiuretic and natriuretic effects. This study investigated the interaction between nitrergic and angiotensinergic pathways on the release of AVP, OT and ANP and on urinary volume and sodium excretion in water-loaded rats. Unanaesthetized, freely moving, male Wistar rats received two water loads followed by an injection into the lateral ventricle of an inhibitor of NOS (l -NAME), a NO donor [3-morpholinylsydnoneimine chloride (SIN-1) or S -nitroso- N -acetyl penicillamine (SNAP)] or vehicle (isotonic saline) and, 20 min after, they received a second i.c.v. injection of Ang II or vehicle. Injections of l -NAME or Ang II produced an increase in plasma levels of AVP, OT and ANP, a reduction in urinary volume and an increase in sodium excretion. Pretreatment with l -NAME enhanced the Ang II-induced increase in AVP, OT and ANP release, as well as the antidiuresis and natriuresis. Injection of SIN-1 or SNAP did not modify hormonal plasma levels and urinary parameters. In contrast SNAP blocked the AVP, OT and ANP release, as well as antidiuretic and natriuretic responses induced by ANG-II. Thus, the central nitrergic system can act to inhibit AVP, OT and ANP secretion and the antidiuretic and natriuretic effects in response to Ang II. [source]

    Nitric oxide synthase inhibition reduces O2 cost of force development and spares high-energy phosphates following contractions in pump-perfused rat hindlimb muscles

    David J. Baker
    The purpose of the present experiments was to test the hypotheses that: (i) nitric oxide synthase (NOS) inhibition reduces the O2 cost of force development across a range of contractile demands; and (ii) this reduced O2 cost of force development would be reflected in a sparing of intramuscular higher energy phosphates. Rat distal hindlimb muscles were pump perfused in situ and electrically stimulated (200 ms trains with pulses at 100 Hz, each pulse 0.05 ms duration) for 1 min each at 15, 30 and 60 tetani min,1 and for 2 min at 90 tetani min,1 in three groups: 0.01 mm adenosine; 1 mm d -NAME and 0.01 mm adenosine (d -NAME); and 1 mm l -NAME and 0.01 mm adenosine (l -NAME). The gastrocnemius,plantaris,soleus muscle group was freeze clamped post-contractions for metabolite analyses. Force was 19% higher and oxygen uptake was 20% lower with l -NAME versus adenosine, and there was a 35% reduction in /time-integrated tension versus adenosine and 24% versusd -NAME that was independent of contraction frequency. l -NAME treatment produced a 33% sparing of muscle phosphocreatine (PCr), and intramuscular lactate was no different between groups. In contrast, d -NAME reduced force by 30%, by 29% and the O2 cost of force development by 15% compared with adenosine, but had no effect on the degree of intramuscular ATP and PCr depletion. These results show that NOS inhibition improved the metabolic efficiency of force development, either by improving the ATP yield for a given O2 consumption or by reducing the ATP cost of force development. In addition, these effects were independent of contraction frequency. [source]

    Role of nitric oxide in the reflex diuresis in rabbits during pulmonary lymphatic obstruction

    K. M. McCormick
    The role of nitric oxide in the reflex diuresis in response to pulmonary lymphatic drainage was examined in anaesthetized, artificially ventilated New Zealand White rabbits. Pulmonary lymphatic drainage was obstructed by raising the pressure in a pouch created from the right external jugular vein. Pulmonary lymphatic obstruction resulted in a significant increase in urine flow from an initial control value of 8.9 ± 0.5 ml (10 min),1 to 12.1 ± 0.6 ml (10 min),1 during lymphatic obstruction (mean ±s.e.m.; n= 17, P < 0.001). This increase in urine flow was accompanied by a significant increase in the excretion of sodium. Additionally, renal blood flow remained unchanged during the increase in urine flow caused by lymphatic obstruction. Intravenous infusion of l -NAME, a non-selective inhibitor of nitric oxide synthase (NOS), abolished the reflex diuresis. Furthermore, intraperitoneal administration of the relatively selective neuronal NOS blocker, 7-nitroindazole also abolished the response. It was observed that infusion of a more soluble neuronal NOS blocker, 7-nitroindazole sodium salt (7-NINA), into the renal medulla also abolished the reflex diuresis. These findings suggest that the increase in urine flow in rabbits caused by pulmonary lymphatic obstruction is dependent upon the integrity of neuronal NOS activity within the renal medulla. [source]

    Nitric oxide and thyroid gland: modulation of cardiovascular function in autonomic-blocked anaesthetized rats

    Andrea Lorena Fellet
    We have previously reported that acute administration of NG -nitro- l -arginine methyl ester (l -NAME) increases the mean arterial pressure (MAP) and heart rate (HR) in autonomic-blocked (CAB) anaesthetized rats. In the present study we examined whether thyroid and adrenal glands are involved in these pressor and chronotropic responses. Sprague-Dawley rats were studied after bilateral vagotomy and ganglionic blockade with hexamethonium (10 mg kg,1), and stabilization of MAP with infusion of phenylephrine (PE) (6 ,g kg,1 min,1). The rats were divided into groups: L, CAB; PE, CAB + PE bolus (6 ,g kg,1); L-TX, thyroidectomy + CAB; L-AX, adrenalectomy + CAB; TX, only thyroidectomy; C, CAB. L, L-AX and L-TX groups received a bolus of l -NAME (7.5 mg kg,1). Triiodothyronine (T3), thyroxin (T4) and thyrotropin (TSH) levels were measured in L and L-TX rats before and after l -NAME administration. Reduced nicotamide adenine dinucleotide (NADPH) diaphorase activity was determined in heart and aorta of the TX group. The pressor response induced by l -NAME was similar in all groups. l -NAME-induced-tachycardia was associated with this rise in MAP. Adrenalectomy did not modify this chronotropic response, but it was attenuated by thyroidectomy. Thyroidectomy by itself decreased the circulating levels of T3 but it had no effect on the plasma levels of T4 and TSH. L and L-TX groups showed similar levels of circulating T4 and TSH, meanwhile the plasma level of T3 decreased in the L group. Nitric oxide synthase (NOS) activity in atria as well as in aorta was greater in the TX group compared with C. When autonomic influences are removed, the thyroid gland modulates intrinsic heart rate via a mechanism that involves, at least in part, the nitric oxide pathway. [source]

    Nitric oxide-dependent protein synthesis in parotid and submandibular glands of anaesthetized rats upon sympathetic stimulation or isoprenaline administration

    Shariel Sayardoust
    In anaesthetized female rats, the ,-adrenoceptor agonist isoprenaline was intravenously infused (20 ,g kg,1 min,1) for 30 min or the ascending cervical sympathetic nerve trunk was intermittently stimulated (50 Hz, 1 s every tenth second) on one side for 30 min. The incorporation of [3H]leucine into trichloroacetic acid (TCA)-insoluble material was used as an index of protein synthesis. In response to isoprenaline, the [3H]leucine incorporation increased by 79% in the parotid glands and by 82% in the submandibular glands. The neuronal type NO-synthase inhibitor N-PLA, reduced (P < 0.001) this response to 26% and 20%, respectively. Sympathetic stimulation under ,-adrenoceptor blockade increased the [3H]leucine incorporation by 192% in the parotid glands and by 35% in the submandibular glands. N-PLA reduced the corresponding percentage figures to 86% (P < 0.01) and 8% (P < 0.05). When tested in the parotid glands, the non-selective NO-synthase inhibitor L -NAME reduced (P < 0.01) the nerve-evoked response to 91%. The increase in [3H]leucine incorporation in response to sympathetic stimulation under ,-adrenoceptor blockade was not affected by N-PLA in the parotid (139%versus 144%) and submandibular glands (39%versus 34%). In non-stimulated glands, the [3H]leucine incorporation was not influenced by the NO-synthase inhibitors. In conclusion, ,-adrenoceptor mediated salivary gland protein synthesis is largely dependent on NO generation by neuronal type NO-synthase, most likely of parenchymal origin. [source]

    Gastroprotection of (-)-,-bisabolol on acute gastric mucosal lesions in mice: the possible involved pharmacological mechanisms

    Nayrton Flávio Moura Rocha
    Abstract (-)-,-Bisabolol is an unsaturated, optically active sesquiterpene alcohol obtained by the direct distillation essential oil from plants such as Vanillosmopsis erythropappa and Matricaria chamomilla. (-)-,-Bisabolol has generated considerable economic interest, since it possesses a delicate floral odor and has been shown to have anti-septic and anti-inflammatory activity. The aim of this work was to evaluate the gastroprotective action of (-)-,-bisabolol on ethanol and indomethacin-induced ulcer models in mice, and further investigate the pharmacological mechanisms involved in this action. The oral administration of (-)-,-bisabolol 100 and 200 mg/kg was able to protect the gastric mucosa from ethanol (0.2 mL/animal p.o.) and indomethacin-induced ulcer (20 mg/kg p.o.). Administration of l -NAME (10 mg/kg i.p.), glibenclamide (10 mg/kg i.p.) or indomethacin (10 mg/kg p.o.) was not able to revert the gastroprotection promoted by (-)-,-bisabolol 200 mg/kg on the ethanol-induced ulcer. Dosage of gastric reduced glutathione (GSH) levels showed that ethanol and indomethacin reduced the content of non-protein sulfhydryl (NP-SH) groups, while (-)-,-bisabolol significantly decreased the reduction of these levels on ulcer-induced mice, but not in mice without ulcer. In conclusion, gastroprotective effect on ethanol and indomethacin-induced ulcer promoted by (-)-,-bisabolol may be associated with an increase of gastric sulfydryl groups bioavailability leading to a reduction of gastric oxidative injury induced by ethanol and indomethacin. [source]

    Evidence against ,2 -adrenoceptors mediating relaxation in rat thoracic aortae: ,2 -agonists relaxation depends on interaction with ,1 -adrenoceptors

    Enrique F. Castillo
    Abstract In rat aorta, the presence of functional ,2 -adrenoceptors (,2 -AR) was investigated in ring preparations preconstricted with ,1 -adrenergic and non- ,1 -adrenergic agonists. Particularly, the hypothetical interference of ,2 -AR agonists with ,1 -AR-mediated vasoconstriction was evaluated. Relaxant and contractile responses to ,2 -AR agonists were obtained. In endothelium-intact and endothelium-denuded aortic rings preconstricted with phenylephrine (1 × 10,6 m), the imidazoline derivatives, clonidine and UK14304, induced relaxations with similar order of potencies (,log EC50) and maxima relaxant effects respectively. Pretreatment with the NO synthase inhibitor, NG -nitro- l -arginine methyl ester (l -NAME) had no effect on the relaxant responses to clonidine and UK14304. In phenylephrine-constricted rings with endothelium, relaxations to clonidine and UK 14304 were not antagonized by the selective ,2 -AR antagonist, rauwolscine (,1 × 10,6 m). Clonidine and UK 14304 induced only contractions on endothelium-intact and endothelium-denuded aortic rings contracted with prostaglandin F2, (3 × 10,7 m). Moreover, clonidine and UK 14304-induced relaxation of endothelium-denuded arteries precontracted with methoxamine but not with serotonin. Finally, the concentration,contraction curves to clonidine and UK 14304 in endothelium-denuded aortic rings were significantly shifted to the right by the ,1D -AR selective antagonist, BMY 7378, and rauwolscine. The pA2 and pKB values for BMY 7378 and rauwolscine, respectively, against endothelium-independent actions of clonidine and UK 14304 were characteristic of an effect on the ,1D -AR. The other selective ,2 -AR agonist tested BHT 933 (an azepine derivative), lacks considerable relaxant and contractile effects in rat aorta. The results provide no evidence for the presence of functional ,2 -AR in rat aorta. Respectively, the relaxant and contractile effects of the imidazoline derivatives, clonidine and UK 14304, may be due to an adjustable (in relation to the agonist-dependent active state of the ,1 -AR), inhibitory and excitatory, interaction with ,1 -ARs. [source]

    Tyrosine phosphorylation of a 38-kDa capacitation-associated buffalo (Bubalus bubalis) sperm protein is induced by L -arginine and regulated through a cAMP/PKA-independent pathway

    S. C. Roy
    Summary The aim of the present study was to determine the effect of l -arginine on nitric oxide (NO,) synthesis, capacitation and protein tyrosine phosphorylation in buffalo spermatozoa. Ejaculated buffalo spermatozoa were capacitated in the absence or presence of heparin, or l -arginine or N, -nitro- l -arginine methyl ester (l -NAME), an inhibitor of nitric oxide synthase (NOS) for 6 h. Capacitating spermatozoa generated NO, both spontaneously and following stimulation with l -arginine and l -NAME quenched such l -arginine-induced NO, production. Immunolocalization of NOS suggested for existence of constitutive NOS in buffalo spermatozoa. l -Arginine (10 mm) was found to be a potent capacitating agent and addition of l -NAME to the incubation media attenuated both l -arginine and heparin-induced capacitation and suggested that NO, is involved in the capacitation of buffalo spermatozoa. Two sperm proteins of Mr 38 000 (p38) and 20 000 (p20) were tyrosine phosphorylated extensively by both heparin and l -arginine. Of these, the tyrosine phosphorylation of p38 was insensitive to both induction by cAMP agonists as well as inhibition by a protein kinase A (PKA) inhibitor. Further, most of these l -arginine-induced tyrosine phosphorylated proteins were localized to the midpiece and principal piece regions of flagellum of capacitated spermatozoa and suggested that sperm flagellum takes active part during capacitation. These results indicated that l -arginine induces capacitation of buffalo spermatozoa through NO, synthesis and tyrosine phosphorylation of specific sperm proteins involving a pathway independent of cAMP/PKA. [source]

    The Nutrition, Aging, and Memory in Elders (NAME) study: design and methods for a study of micronutrients and cognitive function in a homebound elderly population

    Tammy M. Scott
    Abstract Background Micronutrient status can affect cognitive function in the elderly; however, there is much to learn about the precise effects. Understanding mediating factors by which micronutrient status affects cognitive function would contribute to elders' quality of life and their ability to remain in the home. Objectives The Nutrition, Aging, and Memory in Elders (NAME) Study is designed to advance the current level of knowledge by investigating potential mediating factors by which micronutrient status contributes to cognitive impairment and central nervous system abnormalities in the elderly. NAME targets homebound elders because they are understudied and particularly at risk for poor nutritional status. Methods Subjects are community-based elders aged 60 and older, recruited through area Aging Services Access Points. The NAME core data include demographics; neuropsychological testing and activities of daily living measures; food frequency, health and behavioral questionnaires; anthropometrics; gene status; plasma micronutrients, homocysteine, and other blood determinants. A neurological examination, psychiatric examination, and brain MRI and volumetric measurements are obtained from a sub-sample. Results Preliminary data from first 300 subjects are reported. These data show that the NAME protocol is feasible and that the enrolled subjects are racially diverse, at-risk, and had similar basic demographics to the population from which they were drawn. Conclusion The goal of the NAME study is to evaluate novel relationships between nutritional factors and cognitive impairment. These data may provide important information on potential new therapeutic strategies and supplementation standards for the elderly to maintain cognitive function and potentially reduce the public health costs of dementia. Copyright © 2006 John Wiley & Sons, Ltd. [source]

    Nitric Oxide: The "Second Messenger" of Insulin

    IUBMB LIFE, Issue 5 2000
    Nighat N. Kahn
    Abstract Incubation of various tissues, including heart, liver, kidney, muscle, and intestine from mice and erythrocytes or their membrane fractions from humans, with physiologic concentration of insulin resulted in the activation of a membrane-bound nitric oxide synthase (NOS). Activation of NOS and synthesis of NO were stimulated by the binding of insulin to specific receptors on the cell surface. A Lineweaver-Burk plot of the enzymatic activity demonstrated that the stimulation of NOS by insulin was related to the decrease in the Km for L-arginine, the substrate for NOS, with a simultaneous increase of Vmax. Addition of NG-nitro-L-arginine methyl ester (LNAME), a competitive inhibitor of NOS, to the reaction mixture completely inhibited the hormone-stimulated NO synthesis in all tissues. Furthermore, NO had an insulin-like effect in stimulating glucose transport and glucose oxidation in muscle, a major site for insulin action. Addition of NAME to the reaction mixture completely blocked the stimulatory effect of insulin by inhibiting both NO production and glucose metabolism, without affecting the hormone-stimulated tyrosine or phosphatidylinositol 3-kinases of the membrane preparation. Injection of NO in alloxan-induced diabetic mice mimicked the effect of insulin in the control of hyperglycemia (i.e., lowered the glucose content in plasma). However, injection of NAME before the administration of insulin to diabetic-induced and nondiabetic mice inhibited not only the insulin-stimulated increase of NO in plasma but also the glucose-lowering effect of insulin. [source]

    Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide induced inducible NOS and cyclooxygenase-2 gene expressions by rutin, quercetin, and quercetin pentaacetate in RAW 264.7 macrophages

    Yen-Chou Chen
    Abstract Several natural flavonoids have been demonstrated to perform some beneficial biological activities, however, higher-effective concentrations and poor-absorptive efficacy in body of flavonoids blocked their practical applications. In the present study, we provided evidences to demonstrate that flavonoids rutin, quercetin, and its acetylated product quercetin pentaacetate were able to be used with nitric oxide synthase (NOS) inhibitors (N -nitro- L -arginine (NLA) or N -nitro- L -arginine methyl ester (L -NAME)) in treatment of lipopolysaccharide (LPS) induced nitric oxide (NO) and prostaglandin E2 (PGE2) productions, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expressions in a mouse macrophage cell line (RAW 264.7). The results showed that rutin, quercetin, and quercetin pentaacetate-inhibited LPS-induced NO production in a concentration-dependent manner without obvious cytotoxic effect on cells by MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide as an indicator. Decrease of NO production by flavonoids was consistent with the inhibition on LPS-induced iNOS gene expression by western blotting. However, these compounds were unable to block iNOS enzyme activity by direct and indirect measurement on iNOS enzyme activity. Quercetin pentaacetate showed the obvious inhibition on LPS-induced PGE2 production and COX-2 gene expression and the inhibition was not result of suppression on COX-2 enzyme activity. Previous study demonstrated that decrease of NO production by L -arginine analogs effectively stimulated LPS-induced iNOS gene expression, and proposed that stimulatory effects on iNOS protein by NOS inhibitors might be harmful in treating sepsis. In this study, NLA or L -NAME treatment stimulated significantly on LPS-induced iNOS (but not COX-2) protein in RAW 264.7 cells which was inhibited by these three compounds. Quercetin pentaacetate, but not quercetin and rutin, showed the strong inhibitory activity on PGE2 production and COX-2 protein expression in NLA/LPS or L -NAME/LPS co-treated RAW 264.7 cells. These results indicated that combinatorial treatment of L -arginine analogs and flavonoid derivates, such as quercetin pentaacetate, effectively inhibited LPS-induced NO and PGE2 productions, at the same time, inhibited enhanced expressions of iNOS and COX-2 genes. J. Cell. Biochem. 82: 537,548, 2001. © 2001 Wiley-Liss, Inc. [source]

    Galactosyl derivative of N, -nitro- L -arginine: Study of antiproliferative activity on human thyroid follicular carcinoma cells

    Daniela Melisi
    The methyl ester prodrug of N, -nitro- L -arginine (L -NAME) has been reported to exert anticancer effects against several human tumors, including thyroid carcinoma, by inhibiting nitric oxide synthase (NOS). However, chronic administration of L -NAME has often led to adverse events causing cardiovascular alterations due to its potential toxic effect. Here we report for the first time the synthesis of the galactosyl ester prodrug of N, -nitro- L -arginine, NAGAL, a prodrug capable of inhibiting NOS more efficiently and with fewer adverse events than its parent drug. For this purpose RO82-W-1, a thyroid cell line derived from human follicular carcinoma, was used. MTT test results showed that NAGAL affected cell viability to a significantly greater extent than did L -NAME. Moreover, fluorescence activated cell sorter (FACS) analyses revealed that NAGAL, compared to L -NAME, was able to reduce nitric oxide (NO) production as well as increase the percentage of apoptotic thyreocytes. Western blot further confirmed the reduction in NOS-II expression by NAGAL. Finally, by using the LC,MS technique, we found that NAGAL elicited a higher increase in N, -nitro- L -arginine (NA) concentration than did L -NAME. Thus, this study suggests that NAGAL could be considered a potential therapeutic tool for those pathologies involving an overproduction of NO, including thyroid carcinoma. J. Cell. Physiol. 221: 440,447, 2009. © 2009 Wiley-Liss, Inc. [source]

    Nitric oxide synthesis inhibition alters rat cutaneous wound healing

    Thaís P. Amadeu
    Background:, Nitric oxide (NO) is an important molecule that participates in wound repair, but its effects on cutaneous wound healing are not well understood. The aim of this study was to investigate the effects of NO synthesis blockade on rat cutaneous wound healing by the administration of NG -nitro- l -arginine methyl ester (l -NAME), a non-selective inhibitor of NO synthases. Methods:, NO synthesis was inhibited by administration of l -NAME (20 mg/kg/day) in drinking water. An excisional wound was done, and the animals were killed 7, 14, and 21 days later. Wound contraction and blood pressure were evaluated. The lesion and adjacent skin were formalin fixed and paraffin embedded. Mast cells were quantified, and vessels were evaluated using stereological methods. Results:,l -NAME-treated animals presented delayed wound contraction, alterations in collagen organization, and neoepidermis thickness. The inhibition of NO synthesis increased mast cell migration 7 days after wounding, but decreased 21 days after wounding. Volume density of vessels was decreased in l -NAME-treated animals, 21 days after lesion. Surface density of vessels was frequently smaller in l -NAME-treated animals than in controls. Conclusion:, The blockade of NO synthesis impaired cutaneous wound healing, acting in early and late phases of wound repair. [source]

    Reactive oxygen species in rats with chronic post-ischemia pain

    K. H. KWAK
    Background: An emerging theme in the study of the pathophysiology of persistent pain is the role of reactive oxygen species (ROS). In the present study, we examined the hypothesis that the exogenous supply of antioxidant drugs during peri-reperfusion would attenuate pain induced by ischemia/reperfusion (IR) injury. We investigated the analgesic effects of three antioxidants administered during peri-reperfusion using an animal model of complex regional pain syndrome-type I consisting of chronic post-ischemia pain (CPIP) of the hind paw. Methods: Application of a tight-fitting tourniquet for a period of 3 h produced CPIP in male Sprague,Dawley rats. Low-dose allopurinol (4 mg/kg), high-dose allopurinol (40 mg/kg), superoxide dismutase (SOD, 4000 U/kg), N -nitro- l -arginine methyl ester (l -NAME, 10 mg/kg), or SOD (4000 U/kg)+l -NAME (10 mg/kg) was administered intraperitoneally just after tourniquet application and at 1 and 2 days after reperfusion for 3 days. The effects of antioxidants in rats were investigated using mechanical and cold stimuli. Each group consisted of seven rats. Results: Allopurinol caused significant alleviation in mechanical and cold allodynia for a period of 4 weeks in rats with CPIP. Both SOD and l -NAME, which were used to investigate the roles of superoxide (O2 ,,) and nitric oxide (NO) in pain, also attenuated neuropathic-like pain symptoms in rats for 4 weeks. Conclusions: Our findings suggest that O2 ,, and NO mediate IR injury-induced chronic pain, and that ROS scavengers administered during the peri-reperfusion period have long-term analgesic effects. [source]




    John Dickson

    Neuropeptide Y stimulates retinal neural cell proliferation , involvement of nitric oxide

    Ana Rita Álvaro
    Abstract Neuropeptide Y (NPY) is a 36 amino acid peptide widely present in the CNS, including the retina. Previous studies have demonstrated that NPY promotes cell proliferation of rat post-natal hippocampal and olfactory epithelium precursor cells. The aim of this work was to investigate the role of NPY on cell proliferation of rat retinal neural cells. For this purpose, primary retinal cell cultures expressing NPY, and NPY Y1, Y2, Y4 and Y5 receptors [Álvaro et al., (2007) Neurochem. Int., 50, 757] were used. NPY (10,1000 nM) stimulated cell proliferation through the activation of NPY Y1, Y2 and Y5 receptors. NPY also increased the number of proliferating neuronal progenitor cells (BrdU+/nestin+ cells). The intracellular mechanisms coupled to NPY receptors activation that mediate the increase in cell proliferation were also investigated. The stimulatory effect of NPY on cell proliferation was reduced by l -nitroarginine-methyl-esther (l -NAME; 500 ,M), a nitric oxide synthase inhibitor, 1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one (ODQ; 20 ,M), a soluble guanylyl cyclase inhibitor or U0126 (1 ,M), an inhibitor of the extracellular signal-regulated kinase 1/2 (ERK 1/2). In conclusion, NPY stimulates retinal neural cell proliferation, and this effect is mediated through nitric oxide,cyclic GMP and ERK 1/2 pathways. [source]