NN Model (nn + model)

Distribution by Scientific Domains

Selected Abstracts

Shared near neighbours neural network model: a debris flow warning system

Fi-John Chang
Abstract The main purpose of this study is to develop a new type of artificial neural network based model for constructing a debris flow warning system. The Chen-Eu-Lan river basin, which is located in Central Taiwan, is assigned as the study area. The creek is one of the most well-known debris flow areas where several damaging debris flows have been reported in the last two decades. The hydrological and geological data, which might have great influence on the occurrence of debris flows, are first collected and analysed, then, the shared near neighbours neural network (SNN + NN) is presented to construct the debris flow warning system for the watershed. SNN is an unsupervised learning method that has the advantage of dealing with non-globular clusters, besides presenting computational efficiency. By using SNN, the compiled hydro-geological data set can easily and meaningfully be clustered into several categories. These categories can then be identified as ,occurrence' or ,no-occurrence' of debris flows. To improve the effectiveness of the debris flow warning system, a neural network framework is designed to connect all the clusters produced by the SNN method, whereas the connected weights of the network are adjusted through a supervised learning method. This framework is used and its applicability and practicability for debris flow warning are investigated. The results demonstrate that the proposed SNN + NN model is an efficient and accurate tool for the development of a debris flow warning system. Copyright 2007 John Wiley & Sons, Ltd. [source]

Modelling small-business credit scoring by using logistic regression, neural networks and decision trees

Mirta Bensic
Previous research on credit scoring that used statistical and intelligent methods was mostly focused on commercial and consumer lending. The main purpose of this paper is to extract important features for credit scoring in small-business lending on a dataset with specific transitional economic conditions using a relatively small dataset. To do this, we compare the accuracy of the best models extracted by different methodologies, such as logistic regression, neural networks (NNs), and CART decision trees. Four different NN algorithms are tested, including backpropagation, radial basis function network, probabilistic and learning vector quantization, by using the forward nonlinear variable selection strategy. Although the test of differences in proportion and McNemar's test do not show a statistically significant difference in the models tested, the probabilistic NN model produces the highest hit rate and the lowest type I error. According to the measures of association, the best NN model also shows the highest degree of association with the data, and it yields the lowest total relative cost of misclassification for all scenarios examined. The best model extracts a set of important features for small-business credit scoring for the observed sample, emphasizing credit programme characteristics, as well as entrepreneur's personal and business characteristics as the most important ones. Copyright 2005 John Wiley & Sons, Ltd. [source]

Sensitivity analysis of neural network parameters to improve the performance of electricity price forecasting

Paras Mandal
Abstract This paper presents a sensitivity analysis of neural network (NN) parameters to improve the performance of electricity price forecasting. The presented work is an extended version of previous works done by authors to integrate NN and similar days (SD) method for predicting electricity prices. Focus here is on sensitivity analysis of NN parameters while keeping the parameters same for SD to forecast day-ahead electricity prices in the PJM market. Sensitivity analysis of NN parameters include back-propagation learning set (BP-set), learning rate (,), momentum (,) and NN learning days (dNN). The SD parameters, i.e. time framework of SD (d=45 days) and number of selected similar price days (N=5) are kept constant for all the simulated cases. Forecasting performance is carried out by choosing two different days from each season of the year 2006 and for which, the NN parameters for the base case are considered as BP-set=500, ,=0.8, ,=0.1 and dNN=45 days. Sensitivity analysis has been carried out by changing the value of BP-set (500, 1000, 1500); , (0.6, 0.8, 1.0, 1.2), , (0.1, 0.2, 0.3) and dNN (15, 30, 45 and 60 days). The most favorable value of BP-set is first found out from the sensitivity analysis followed by that of , and ,, and based on which the best value of dNN is determined. Sensitivity analysis results demonstrate that the best value of mean absolute percentage error (MAPE) is obtained when BP-set=500, ,=0.8, ,=0.1 and dNN=60 days for winter season. For spring, summer and autumn, these values are 500, 0.6, 0.1 and 45 days, respectively. MAPE, forecast mean square error and mean absolute error of reasonably small value are obtained for the PJM data, which has correlation coefficient of determination (R2) of 0.7758 between load and electricity price. Numerical results show that forecasts generated by developed NN model based on the most favorable case are accurate and efficient. Copyright 2008 John Wiley & Sons, Ltd. [source]

Forecasting interest rate swap spreads using domestic and international risk factors: evidence from linear and non-linear models

Ilias Lekkos
Abstract This paper explores the ability of factor models to predict the dynamics of US and UK interest rate swap spreads within a linear and a non-linear framework. We reject linearity for the US and UK swap spreads in favour of a regime-switching smooth transition vector autoregressive (STVAR) model, where the switching between regimes is controlled by the slope of the US term structure of interest rates. We compare the ability of the STVAR model to predict swap spreads with that of a non-linear nearest-neighbours model as well as that of linear AR and VAR models. We find some evidence that the non-linear models predict better than the linear ones. At short horizons, the nearest-neighbours (NN) model predicts better than the STVAR model US swap spreads in periods of increasing risk conditions and UK swap spreads in periods of decreasing risk conditions. At long horizons, the STVAR model increases its forecasting ability over the linear models, whereas the NN model does not outperform the rest of the models.,,Copyright 2007 John Wiley & Sons, Ltd. [source]