NMR Structure Determination (nmr + structure_determination)

Distribution by Scientific Domains


Selected Abstracts


Solid-state NMR Structure Determination

IUBMB LIFE, Issue 9 2003
Alison Drechsler
Abstract Biological applications of solid-state NMR (SS-NMR) have been predominantly in the area of model membrane systems. Increasingly the focus has been membrane peptides and proteins. SS-NMR is able to provide information about how the peptides or proteins interact with the lipids or other peptides/proteins in the membrane, their effect on the membrane and the location of the peptides or proteins relative to the membrane surface. Recent developments in biological SS-NMR have been made possible by improvements in labelling and NMR techniques. This review discusses aligned systems and magic angle spinning techniques, bilayers and bicelles, and measurement of chemical shift anisotropy and dipolar coupling. A number of specific experiments such as cross polarization, rotational resonance, REDOR, PISEMA, MAOSS and multidimensional experiments are described. In addition to 2H, 13C and 15N, recent solid-sate 1H, 19F and 17O NMR work is discussed. Several examples of the use of SS-NMR to determine the structure of membrane peptides and proteins are given. IUBMB Life, 55: 515-523, 2003 [source]


Building native protein conformation from NMR backbone chemical shifts using Monte Carlo fragment assembly

PROTEIN SCIENCE, Issue 8 2007
Haipeng Gong
Abstract We have been analyzing the extent to which protein secondary structure determines protein tertiary structure in simple protein folds. An earlier paper demonstrated that three-dimensional structure can be obtained successfully using only highly approximate backbone torsion angles for every residue. Here, the initial information is further diluted by introducing a realistic degree of experimental uncertainty into this process. In particular, we tackle the practical problem of determining three-dimensional structure solely from backbone chemical shifts, which can be measured directly by NMR and are known to be correlated with a protein's backbone torsion angles. Extending our previous algorithm to incorporate these experimentally determined data, clusters of structures compatible with the experimentally determined chemical shifts were generated by fragment assembly Monte Carlo. The cluster that corresponds to the native conformation was then identified based on four energy terms: steric clash, solvent-squeezing, hydrogen-bonding, and hydrophobic contact. Currently, the method has been applied successfully to five small proteins with simple topology. Although still under development, this approach offers promise for high-throughput NMR structure determination. [source]


Expression, purification, and characterization of Thermotoga maritima membrane proteins for structure determination

PROTEIN SCIENCE, Issue 5 2006
Linda Columbus
Abstract Structural studies of integral membrane proteins typically rely upon detergent micelles as faithful mimics of the native lipid bilayer. Therefore, membrane protein structure determination would be greatly facilitated by biophysical techniques that are capable of evaluating and assessing the fold and oligomeric state of these proteins solubilized in detergent micelles. In this study, an approach to the characterization of detergent-solubilized integral membrane proteins is presented. Eight Thermotoga maritima membrane proteins were screened for solubility in 11 detergents, and the resulting soluble protein,detergent complexes were characterized with small angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD) spectroscopy, and chemical cross-linking to evaluate the homogeneity, oligomeric state, radius of gyration, and overall fold. A new application of SAXS is presented, which does not require density matching, and NMR methods, typically used to evaluate soluble proteins, are successfully applied to detergent-solubilized membrane proteins. Although detergents with longer alkyl chains solubilized the most proteins, further characterization indicates that some of these protein,detergent complexes are not well suited for NMR structure determination due to conformational exchange and protein oligomerization. These results emphasize the need to screen several different detergents and to characterize the protein,detergent complex in order to pursue structural studies. Finally, the physical characterization of the protein,detergent complexes indicates optimal solution conditions for further structural studies for three of the eight overexpressed membrane proteins. [source]


Structure of human desArg-C5a

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2010
William J. Cook
The anaphylatoxin C5a is derived from the complement component C5 during activation of the complement cascade. It is an important component in the pathogenesis of a number of inflammatory diseases. NMR structures of human and porcine C5a have been reported; these revealed a four-helix bundle stabilized by three disulfide bonds. The crystal structure of human desArg-C5a has now been determined in two crystal forms. Surprisingly, the protein crystallizes as a dimer and each monomer in the dimer has a three-helix core instead of the four-helix bundle noted in the NMR structure determinations. Furthermore, the N-terminal helices of the two monomers occupy different positions relative to the three-helix core and are completely different from the NMR structures. The physiological significance of these structural differences is unknown. [source]