Nmol Kg (nmol + kg)

Distribution by Scientific Domains


Selected Abstracts


Increased fat oxidation and regulation of metabolic genes with ultraendurance exercise

ACTA PHYSIOLOGICA, Issue 1 2007
J. W. Helge
Abstract Aim:, Regular endurance exercise stimulates muscle metabolic capacity, but effects of very prolonged endurance exercise are largely unknown. This study examined muscle substrate availability and utilization during prolonged endurance exercise, and associated metabolic genes. Methods:, Data were obtained from 11 competitors of a 4- to 5-day, almost continuous ultraendurance race (seven males, four females; age: 36 ± 11 years; cycling o2peak: males 57.4 ± 5.9, females 48.1 ± 4.0 mL kg,1 min,1). Before and after the race muscle biopsies were obtained from vastus lateralis, respiratory gases were sampled during cycling at 25 and 50% peak aerobic power output, venous samples were obtained, and fat mass was estimated by bioimpedance under standardized conditions. Results:, After the race fat mass was decreased by 1.6 ± 0.4 kg (11%; P < 0.01). Respiratory exchange ratio at the 25 and 50% workloads decreased (P < 0.01) from 0.83 ± 0.06 and 0.93 ± 0.03 before, to 0.71 ± 0.01 and 0.85 ± 0.02, respectively, after the race. Plasma fatty acids were 3.5 times higher (from 298 ± 74 to 1407 ± 118 ,mol L,1; P < 0.01). Muscle glycogen content fell 50% (from 554 ± 28 to 270 ± 25 nmol kg,1 d.w.; n = 7, P < 0.01), whereas the decline in muscle triacylglycerol (from 32 ± 5 to 22 ± 3 mmol kg,1 d.w.; P = 0.14) was not statistically significant. After the race, muscle mRNA content of lipoprotein lipase and glycogen synthase increased (P < 0.05) 3.9- and 1.7-fold, respectively, while forkhead homolog in rhabdomyosarcoma, pyruvate dehydrogenase kinase 4 and vascular endothelial growth factor mRNA tended (P < 0.10) to be higher, whereas muscle peroxisome proliferator-activated receptor , co-activator-1, mRNA tended to be lower (P = 0.06). Conclusion:, Very prolonged exercise markedly increases plasma fatty acid availability and fat utilization during exercise. Exercise-induced regulation of genes encoding proteins involved in fatty acid recruitment and oxidation may contribute to these changes. [source]


Endogenous and exogenous ghrelin enhance the colonic and gastric manifestations of dextran sodium sulphate-induced colitis in mice

NEUROGASTROENTEROLOGY & MOTILITY, Issue 1 2009
B. De Smet
Abstract, Ghrelin is an important orexigenic peptide that not only exerts gastroprokinetic but also immunoregulatory effects. This study aimed to assess the role of endogenous and exogenous ghrelin in the pathogenesis of colitis and in the disturbances of gastric emptying and colonic contractility during this process. Dextran sodium sulphate colitis was induced for 5 days in (i) ghrelin+/+ and ghrelin,/, mice and clinical and histological parameters were monitored at days 5, 10 and 26 and (ii) in Naval Medical Research Institute non-inbred Swiss (NMRI) mice treated with ghrelin (100 nmol kg,1) twice daily for 5 or 10 days. Neural contractility changes were measured in colonic smooth muscle strips, whereas gastric emptying was measured with the 14C octanoic acid breath test. Inflammation increased ghrelin plasma levels. Body weight loss, histological damage, myeloperoxidase activity and IL-1, levels were attenuated in ghrelin,/, mice. Whereas absence of ghrelin did not affect changes in colonic contractility, gastric emptying in the acute phase was accelerated in ghrelin+/+ but not in ghrelin,/, mice. In agreement with the studies in ghrelin knockout mice, 10 days treatment of NMRI mice with exogenous ghrelin enhanced the clinical disease activity and promoted infiltration of neutrophils and colonic IL-1, levels. Unexpectedly, ghrelin treatment decreased excitatory and inhibitory neural responses in the colon of healthy but not of inflamed NMRI mice. Endogenous ghrelin enhances the course of the inflammatory process and is involved in the disturbances of gastric emptying associated with colitis. Treatment with exogenous ghrelin aggravates colitis, thereby limiting the potential therapeutic properties of ghrelin during intestinal inflammation. [source]


Potentiation of E-4031-induced torsade de pointes by HMR1556 or ATX-II is not predicted by action potential short-term variability or triangulation

BRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2007
G Michael
Background and purpose: Torsade de pointes (TdP) can be induced by a reduction in cardiac repolarizing capacity. The aim of this study was to assess whether IKs blockade or enhancement of INa could potentiate TdP induced by IKr blockade and to investigate whether short-term variability (STV) or triangulation of action potentials preceded TdP. Experimental approach: Experiments were performed in open-chest, pentobarbital-anaesthetized, ,1 -adrenoceptor-stimulated, male New Zealand White rabbits, which received three consecutive i.v. infusions of either the IKr blocker E-4031 (1, 3 and 10 nmol kg,1 min,1), the IKs blocker HMR1556 (25, 75 and 250 nmol kg,1 min,1) or E-4031 and HMR1556 combined. In a second study rabbits received either the same doses of E-4031, the INa enhancer, ATX-II (0.4, 1.2 and 4.0 nmol kg,1) or both of these drugs. ECGs and epicardial monophasic action potentials were recorded. Key results: HMR1556 alone did not cause TdP but increased E-4031-induced TdP from 25 to 80%. ATX-II alone caused TdP in 38% of rabbits, as did E-4031; 75% of rabbits receiving both drugs had TdP. QT intervals were prolonged by all drugs but the extent of QT prolongation was not related to the occurrence of TdP. No changes in STV were detected and triangulation was only increased after TdP occurred. Conclusions and implications: Giving modulators of ion channels in combination substantially increased TdP but, in this model, neither STV nor triangulation of action potentials could predict TdP. British Journal of Pharmacology (2007) 152, 1215,1227; doi:10.1038/sj.bjp.0707513; published online 29 October 2007 [source]


In vitro and in vivo pharmacological characterization of the novel UT receptor ligand [Pen5,DTrp7,Dab8]urotensin II(4,11) (UFP-803)

BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2006
Valeria Camarda
The novel urotensin-II (U-II) receptor (UT) ligand, [Pen5,DTrp7,Dab8]U-II(4,11) (UFP-803), was pharmacologically evaluated and compared with urantide in in vitro and in vivo assays. In the rat isolated aorta, UFP-803 was inactive alone but, concentration dependently, displaced the contractile response to U-II to the right, revealing a competitive type of antagonism and a pA2 value of 7.46. In the FLIPR [Ca2+]i assay, performed at room temperature in HEK293hUT and HEK293rUT cells, U-II increased [Ca2+]i with pEC50 values of 8.11 and 8.48. Urantide and UFP-803 were inactive as agonists, but antagonized the actions of U-II by reducing, in a concentration-dependent manner, the agonist maximal effects with apparent pKB values in the range of 8.45,9.05. In a separate series of experiments performed at 37°C using a cuvette-based [Ca2+]i assay and CHOhUT cells, urantide mimicked the [Ca2+]i stimulatory effect of U-II with an intrinsic activity (,) of 0.80, while UFP-803 displayed a small (,=0.21) but consistent residual agonist activity. When the same experiments were repeated at 22°C (a temperature similar to that in FLIPR experiments), urantide displayed a very small intrinsic activity (,=0.11) and UFP-803 was completely inactive as an agonist. In vivo in mice, UFP-803 (10 nmol kg,1) antagonized U-II (1 nmol kg,1)-induced increase in plasma extravasation in various vascular beds, while being inactive alone. In conclusion, UFP-803 is a potent UT receptor ligand which displays competitive/noncompetitive antagonist behavior depending on the assay. While UFP-803 is less potent than urantide, it displayed reduced residual agonist activity and as such may be a useful pharmacological tool. British Journal of Pharmacology (2006) 147, 92,100. doi:10.1038/sj.bjp.0706438 [source]


Proarrhythmic potential of halofantrine, terfenadine and clofilium in a modified in vivo model of torsade de pointes

BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2002
Andrew J Batey
This study was designed to compare the proarrhythmic activity of the antimalarial drug, halofantrine and the antihistamine, terfenadine, with that of clofilium a K+ channel blocking drug that can induce torsade de pointes. Experiments were performed in pentobarbitone-anaesthetized, open-chest rabbits. Each rabbit received intermittent, rising dose i.v. infusions of the ,-adrenoceptor agonist phenylephrine. During these infusions rabbits also received increasing i.v. doses of clofilium (20, 60 and 200 nmol kg,1 min,1), terfenadine (75, 250 and 750 nmol kg,1 min,1), halofantrine (6, 20 and 60 ,mol kg,1) or vehicle. Clofilium and halofantrine caused dose-dependent increases in the rate-corrected QT interval (QTc), whereas terfenadine prolonged PR and QRS intervals rather than prolonging cardiac repolarization. Progressive bradycardia occurred in all groups. After administration of the highest dose of each drug halofantrine caused a modest decrease in blood pressure, but terfenadine had profound hypotensive effects resulting in death of most rabbits. The total number of ventricular premature beats was highest in the clofilium group. Torsade de pointes occurred in 6 out of 8 clofilium-treated rabbits and 4 out of 6 of those which received halofantrine, but was not seen in any of the seven terfenadine-treated rabbits. These results show that, like clofilium, halofantrine can cause torsade de pointes in a modified anaesthetized rabbit model whereas the primary adverse effect of terfenadine was cardiac contractile failure. British Journal of Pharmacology (2002) 135, 1003,1012; doi:10.1038/sj.bjp.0704550 [source]


Effects of a selective neuropeptide Y Y2 receptor antagonist, BIIE0246, on Y2 receptors at peripheral neuroeffector junctions

BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2001
Margaret A Smith-White
This study investigated the effects of BIIE0246, a novel neuropeptide Y (NPY) Y2 receptor antagonist, on the inhibition of cholinergic neuroeffector transmission in rat heart and guinea-pig trachea and purinergic neuroeffector transmission in guinea-pig vas deferens produced by the NPY Y2 receptor agonist, N-acetyl [Leu28,31] NPY 24-36. In pentobarbitone anaesthetized rats, supramaximal stimulation every 30 s, of the vagus nerve innervating the heart, increased pulse interval by approximately 100 ms. This response was attenuated by intravenous administration of N-acetyl [Leu28,31] NPY 24-36 (10 nmol kg,1). Transmural stimulation of segments of guinea-pig trachea at 1 min intervals with 5 s trains of stimuli at 0.5, 5, 10, 20 and 40 Hz evoked contractions which were reduced in force by N-acetyl [Leu28,31] NPY 24-36 (2 ,M). In guinea-pig vasa deferentia, the amplitude of excitatory junction potentials evoked by trains of 20 stimuli at 1 Hz was reduced in the presence of N-acetyl [Leu28,31] NPY 24-36 (1 ,M). In all preparations BIIE0246 attenuated the inhibitory effect of N-acetyl [Leu28,31] NPY 24-36 but had no effect when applied alone. The findings support the view that the nerve terminals of postganglionic parasympathetic and sympathetic neurones possess neuropeptide Y Y2 receptors which, when activated, reduce neurotransmitter release. British Journal of Pharmacology (2001) 132, 861,868; doi:10.1038/sj.bjp.0703879 [source]


Relevance of the C-terminal Arg-Phe sequence in ,2 -melanocyte-stimulating hormone (,2 -MSH) for inducing cardiovascular effects in conscious rats

BRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2000
M J M A Nijsen
The cardiovascular effects by ,2 -melanocyte-stimulating hormone (,2 -MSH) are probably not due to any of the well-known melanocortin subtype receptors. We hypothesize that the receptor for Phe-Met-Arg-Phe-amide (FMRFa) or Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide (neuropeptide FF; NPFFa), other Arg-Phe containing peptides, is the candidate receptor. Therefore, we studied various Arg-Phe containing peptides to compare their haemodynamic profile with that of ,2 -MSH(6,12), the most potent fragment of ,2 -MSH. Mean arterial pressure (MAP) and heart rate (HR) changes were measured in conscious rats after intravenous administration of ,2 -MSH related peptides. Phe-Arg-Trp-Asp-Arg-Phe-Gly (,2 -MSH(6,12)), FMRFa, NPFFa, Met-enkephalin-Arg-Phe-amide (MERFa), Arg-Phe-amide (RFa), acetyl-Phe-norLeu-Arg-Phe-amide (acFnLRFa) and desamino-Tyr-Phe-norLeu-Arg-Phe-amide (daYFnLRFa) caused a dose-dependent increase in MAP and HR. ,2 -MSH(6,12) showed the most potent cardiovascular effects (ED50=12 nmol kg,1 for ,MAP; 7 nmol kg,1 for ,HR), as compared to the other Arg-Phe containing peptides (ED50=177,292 nmol kg,1 for ,MAP; 130,260 nmol kg,1 for ,HR). Peptides, which lack the C-terminal Arg-Phe sequence (Lys-Tyr-Val-Met-Gly-His-Phe-Arg-Trp-Asp-Arg-Pro-Gly (,2 -pro11 -MSH), desamino-Tyr-Phe-norLeu-Arg-[L-1,2,3,4 tetrahydroisoquinoline-3-carboxylic acid]-amide (daYFnLR[TIC]a) and Met-enkephalin (ME)), were devoid of cardiovascular actions. The results indicate that the baroreceptor reflex-mediated reduction of tonic sympathetic activity due to pressor effects is inhibited by ,2 -MSH(6,12) and that its cardiovascular effects are dependent on the presence of a C-terminal Arg-Phe sequence. It is suggested that the FMRFa/NPFFa receptor is the likely candidate receptor, involved in these cardiovascular effects. British Journal of Pharmacology (2000) 131, 1468,1474; doi:10.1038/sj.bjp.0703709 [source]