N Losses (n + loss)

Distribution by Scientific Domains


Selected Abstracts


Amino acid 15N in long-term bare fallow soils: influence of annual N fertilizer and manure applications

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2008
R. Bol
Summary Long-term dynamics of amino acids (AAs), from a bare fallow soil experiment (established in 1928 at INRA-Versailles, France), were examined in unamended control (Con) plots and plots treated with ammonium sulphate (Amsul), ammonium nitrate (Amnit), sodium nitrate (Nanit) or with animal manure (Man). Topsoil (0,25 cm) from 1929, 1963 and 1997 was analysed for C, N and 15N content and distribution of 18 amino acids recovered after acid hydrolysis with 6 m HCl. With time, soil N, C and AA content were reduced in Con, Amsul, Amnit and Nanit, but increased in Man. However, the absolute N loss was 3,11 times larger in Man than Nanit, Amsul, Amnit and Con, due to the much higher N annual inputs applied to Man. From 1929 to 1997 in Con, Amsul, Amnit and Nanit the whole soil and non-hydrolysable-N pool ,15N increased associated with the loss of N (indicative of Rayleigh 15N/14N fractionation). No ,15N change from 1929 to 1997 was found in the hydrolysable AA-N (HAN) pool. Fertilizer N inputs aided stabilization of soil AA-N, as AA half-life in the mineral N fertilizer treatments increased from 34 years in 1963 to 50 years in 1997. The ,15N values of alanine and leucine reflected both source input and 15N/14N fractionation effects in soils. The ,15N increase of ornithine (,6,) was similar to the whole soil. The ,15N change of phenylalanine in Con (decrease of 7,) was related to its proportional loss since 1929, whereas for Amsul, Amnit, Nanit and Man it was associated with isotope effects caused by the fertilizer inputs. However, the soil ,15N value of most individual amino acids (IAAs) did not significantly change over nearly 70 years, even with mineral or organic N inputs. We conclude for these bare fallow systems that: (i) ,15N changes in the whole soil and non-hydrolysable AA pool were solely driven by microbial processes and not by the nature of fertilizer inputs, and (ii) without plant inputs, the ,15N of the HAN pool and (most) IAAs may reflect the influence of plant,soil interactions from the previous (arable cropping) rather than present (fallow) land use on these soil ,15N values. [source]


Effects of two contrasting agricultural land-use practices on nitrogen leaching in a sandy soil of Middle Germany

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2009
Christian Böhm
Abstract The objective of this study is to evaluate different agricultural land-use practices in terms of N leaching and to give recommendations for a sustainable agriculture on sandy soils in Middle Germany. Soil mineral N (Nmin) and leachate N were quantified at a sandy soil in N Saxony during 3 years. Two treatments were applied: intensive (I),using inorganic and organic fertilizer and pesticides, and organic (O),exclusively using organic fertilizer, legume-based crop rotation, and no pesticides. Split application of mineral fertilizers did not result in substantial N losses at treatment I. Legumes induced a considerable increase of soil mineral N and particularly of leachate mineral N (Nmin_perc) at treatment O. High Nmin_perc concentrations (up to 78 mg N L,1) were observed during as well as after the cultivation of legumes. These high Nmin_perc concentrations are the reason why clearly higher Nmin_perc losses were determined at treatment O (62 kg N ha,1 y,1) compared to treatment I (23,kg N ha,1 y,1). At both treatments, the quantity of N losses was strongly affected by the precipitation rates. Concentrations and losses of dissolved organic N (DONperc) were assessed as above average at both treatments. The results suggest that the DONperc concentration is influenced by precipitation, soil coverage, and organic fertilizers. Higher values were determined in the percolation water of treatment O. The average annual DONperc losses amounted to 15,kg N ha,1 at I and to 32 kg N ha,1 at O. The average monthly percentage of DONperc losses on the loss of the dissolved total N of percolation water (DTNperc) ranged between <1% and 55% at O and between 2% and 56% at I. For the whole measuring period of 29 months, the relative amounts of DONperc of DTNperc (21% at O and 25% at I) were more or less the same for both treatments. The results show that DONperc can contribute significantly to the total N loss, confirming the importance to consider this N fraction in N-leaching studies. It was concluded that at sandy sites, a split application of mineral fertilizers, as applied at treatment I, seems to be more expedient for limiting the N leaching losses than legume-based crop rotations. [source]


The effect of increased temperature and nitrogen deposition on decomposition in bogs

OIKOS, Issue 8 2008
Angela Breeuwer
Despite their low primary production, ombrotrophic peatlands have a considerable potential to store atmospheric carbon as a result of their extremely low litter decomposition rates. Projected changes in temperature and nitrogen (N) deposition may increase decomposition rates by their positive effects on microbial activity and litter quality, which can be expected to result in enhanced mass loss and N release from Sphagnum and vascular plant litter. This is the first study that examines the combined effects of increased temperature and N deposition on decomposition in bogs. We investigated mass loss and N release at four bog sites along a gradient from north Sweden to northeast Germany in which both temperature and N deposition increased from north to south. We performed two litterbag experiments: one reciprocal experiment with Eriophorum vaginatum litter and one experiment using recalcitrant (Sphagnum fuscum) and more degradable (Sphagnum balticum) Sphagnum litter collected from the most northern site. We measured mass loss and N release during two (Sphagnum) and three (E. vaginatum) years. The N concentration and decomposability of the E. vaginatum litter did not differ between the sites. Mass loss from E. vaginatum litter increased over the gradient from north to south, but there was no such effect on Sphagnum litter. N loss of all litter types was affected by collection site, incubation site and time and all interactions between these factors. N release in Sphagnum was positively related to N concentration. We conclude that decomposition of vascular plants and Sphagnum litter is influenced by different environmental drivers, with enhanced temperatures stimulating mass loss of vascular plant litter, but not of Sphagnum. Enhanced N deposition increases Sphagnum litter N loss. As long-term consequences of climate change will presumably entail a higher vascular plant production, overall litter decomposition rates are likely to increase, especially in combination with increased temperature. [source]


Diffusion technique for 15N and inorganic N analysis of low-N aqueous solutions and Kjeldahl digests,

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 11 2008
Rui Rui Chen
Diffusion of ammonia is a common sample preparation method for the stable isotope analysis of inorganic nitrogen in aqueous solution. Classical diffusion methods usually require 6,12 days of diffusion and often focus on 15N/14N analysis only. More recent studies have discussed whether complete N recovery was necessary for the precise analysis of stable N isotope ratios. In this paper we present a newly revised diffusion technique that allows correct and simultaneous determination of total N and 15N at% from aqueous solutions and Kjeldahl digests, with N concentrations down to sub-0.5-mg,N,L,1 levels, and it is tested under different conditions of 15N isotope labelling. With the modification described, the diffusion time was reduced to 72,h, while the ratios of measured and expected 15N at% were greater than 99% and the simultaneous recovery of total N was >95%. Analysis of soil microbial biomass N and its 15N/14N ratio is one of the most important applications of this diffusion technique. An experiment with soil extracts spiked with 15N-labelled yeast showed that predigestion was necessary to prevent serious N loss during Kjeldahl digestion of aqueous samples (i.e. soil extracts). The whole method of soil microbial biomass N preparation for 15N/14N analysis included chloroform fumigation, predigestion, Kjeldahl digestion and diffusion. An experiment with soil spiked with 15N-labelled yeast was carried out to evaluate the method. Results showed a highly significant correlation of recovered and added N, with the same recovery rate (0.21) of both total N and 15N. A kN value of 0.25 was obtained based on the data. In conclusion, the diffusion method works for soil extracts and microbial biomass N determination and hence could be useful in many types of soil/water studies. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Gross rates of ammonification and nitrification at a nitrogen-saturated spruce (Picea abies (L.)Karst.) stand in southern Germany

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2010
P. Rosenkranz
We investigated the magnitudes of temporal and spatial variabilities of gross ammonification and nitrification, in an N-saturated temperate forest ecosystem. Forest soil gross ammonification, gross nitrification and heterotrophic soil respiration were measured in the forest floor and uppermost mineral layer over a period of 3 years. Total annual gross fluxes for the organic layer and uppermost mineral horizon (0,4 cm) were in the range of 800,980 kg N ha,1 year,1 for gross ammonification and 480,590 kg N ha,1 year,1 for gross nitrification. Annual heterotrophic soil respiration was 8000,8900 kg C ha,1 year,1. Highest soil C and N turnover rates occurred in summer, and a consistent pattern was observed throughout the observation period, with highest values for plots located at a clear-cut area and lowest values for plots located at an unmanaged, approximately 100-year-old, spruce control site. Soil moisture, soil temperature and substrate availability accounted for most of the observed variability of C and N turnover rates. Because gross rates of inorganic N production were more than an order of magnitude larger than ecosystem N losses along hydrological and gaseous pathways, our study underlines the importance of internal microbial N turnover processes for ecosystem N cycling and retention. [source]


Modelling the concentrations of nitrogen and water-soluble carbohydrates in grass herbage ingested by cattle under strip-grazing management

GRASS & FORAGE SCIENCE, Issue 1 2008
N. J. Hoekstra
Abstract There is scope of increasing the nitrogen (N) efficiency of grazing cattle through manipulation of the energy and N concentrations in the herbage ingested. Because of asymmetric grazing by cattle between individual plant parts, it has not yet been established how this translates into the concentrations of N and water-soluble carbohydrates (WSC) in the herbage ingested. A model is described with the objective of assessing the efficacy of individual tools in grassland management in manipulating the WSC and N concentrations of the herbage ingested by cattle under strip-grazing management throughout the growing season. The model was calibrated and independently evaluated for early (April), mid- (June, regrowth phase) and late (September) parts of the growing season. There was a high correlation between predicted and observed WSC concentrations in the ingested herbage (R2 = 0·78, P < 0·001). The correlation between predicted and observed neutral-detergent fibre (NDF) concentrations in the ingested herbage was lower (R2 = 0·49, P < 0·05) with a small absolute bias. Differences in the N concentration between laminae and sheaths, and between clean patches and fouled patches, were adequately simulated and it was concluded that the model could be used to assess the efficacy of grassland management tools for manipulating the WSC and N concentrations in the ingested herbage. Model application showed that reduced rates of application of N fertilizer and longer rotation lengths were effective tools for manipulating herbage quality in early and mid-season. During the later part of the growing season, the large proportion of area affected by dung and urine reduced the effect of application rate of N fertilizer on herbage quality. In contrast, relative differences between high-sugar and low-sugar cultivars of perennial ryegrass were largest during this period. This suggests that high-sugar cultivars may be an important tool in increasing N efficiency by cattle when risks of N losses to water bodies are largest. The model output showed that defoliation height affects the chemical composition of the ingested herbage of both the current and the subsequent grazing period. [source]


Strategies to Improve the Use Efficiency of Mineral Fertilizer Nitrogen Applied to Winter Wheat

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2002
K. Blankenau
Recovery of fertilizer nitrogen (N) applied to winter wheat crops at tillering in spring is lower than that of N applied at later growth stages because of higher losses and immobilization of N. Two strategies to reduce early N losses and N immobilization and to increase N availability for winter wheat, which should result in an improved N use efficiency (= higher N uptake and/or increased yield per unit fertilizer N), were evaluated. First, 16 winter wheat trials (eight sites in each of 1996 and 1997) were conducted to investigate the effects of reduced and increased N application rates at tillering and stem elongation, respectively, on yield and N uptake of grain. In treatment 90-70-60 (90 kg N ha,1 at tillering, 70 kg N ha,1 at stem elongation and 60 kg N ha,1 at ear emergence), the average values for grain yield and grain N removal were up to 3.1 and 5.0 % higher than in treatment 120-40-60, reflecting conventional fertilizer practice. Higher grain N removal for the treatment with reduced N rates at tillering, 90-70-60, was attributed to lower N immobilization (and N losses), which increased fertilizer N availability. Secondly, as microorganisms prefer NH4+ to NO3, for N immobilization, higher net N immobilization would be expected after application of the ammonium-N form. In a pot experiment, net N immobilization was higher and dry matter yields and crop N contents at harvest were lower with ammonium (ammonium sulphate + nitrification inhibitor Dicyandiamide) than with nitrate (calcium nitrate) nutrition. Five field trials were then conducted to compare calcium nitrate (CN) and calcium ammonium nitrate (CAN) nutrition at tillering, followed by two CAN applications for both treatments. At harvest, crop N and grain yield were higher in the CN than in the CAN treatment at each N supply level. In conclusion, fertilizer N use efficiency in winter wheat can be improved if N availability to the crops is increased as a result of reduced N immobilization (and N losses) early in the growth period. N application systems could be modified towards strategies with lower N applications at tillering compensated by higher N dressing applications later. An additional advantage is expected to result from use of nitrate-N fertilizers at tillering. Strategien zur Verbesserung der Effizienz von Düngerstickstoff in Winterweizen Aus früheren Versuchen mit Winterweizen ist bekannt, daß zur Ernte die Wiederfindung von im Frühjahr zur Bestokkung gedüngtem Stickstoff (N) geringer ist, als die von N aus Spätgaben. Die Ursachen liegen in einer höheren mikrobiell-bedingten Netto-N-Immobilisation, aber auch N-Verlusten zwischen Bestockung und Schoßbeginn im Vergleich zu späteren Wachstumstadien begründet. In den vorliegenden Versuchen wurden zwei Strategien getestet, um insbesondere die früh in der Vegetation auftretende Netto-N-Immobilisation zu vermindern. Die dadurch erwartete erhöhte N-Verfügbarkeit sollte zu einer erhöhten N-Effizienz (höherer N-Entzug/Ertrag bezogen auf die N-Düngung) führen. 1996 und 1997 wurden jeweils 8 Feldversuche mit Winterweizen durchgeführt, um den Einfluß einer reduzierten Andüngung bei gleichzeitig erhöhter Schossergabe im Vergleich zur konventionellen N-Düngung zu untersuchen. Tatsächlich wurden in dem Prüfglied 90-70-60 (N-Sollwertdüngung: 90 kg N ha,1, Schossergabe: 70 kg N ha,1, Ährengabe: 60 kg N ha,1) im Mittel bis zu 3.1 % höhere Erträge und 5.0 % höhere N-Abfuhren mit dem Korn im Vergleich zur konventionellen Variante 120-40-60 (N-Sollwertdüngung: 120 kg N ha,1, Schossergabe: 40 kg N ha,1 und Ährengabe: 60 kg N ha,1) erzielt. Die höhere N-Abfuhr kann auf eine erhöhte N-Verfügbarkeit infolge geringerer mikrobieller N-Festlegung zurückgeführt werden. Da die vornehmlich heterotrophen Bodenmikroorganismen bevorzugt NH4+ gegenüber NO3, immobilisieren, kann eine höhere N-Immobilisation bei Ammonium-Düngung erwartet werden. Tatsächlich wurden in einem Gefäßversuch nach Düngung von Ammoniumsulfat (+ Nitrifikationshemmer Dicyandiamid) geringere Trokkenmasseerträge und N-Aufnahmen von Weizenpflanzen erzielt als mit Calciumnitrat. Für die Ammoniumsulfatvariante ergab sich eine höhere Netto-N-Immobilisation. Danach wurde in fünf Feldversuchen mit Winterweizen der Einfluß einer Andüngung mit Nitrat (Calciumnitrat) im Vergleich zur Verwendung des ammoniumhaltigen Kalkammonsalpeters (KAS) auf die N-Aufnahme und den Kornertrag untersucht (beide Varianten erhielten KAS als Spätgaben). In der nitratangedüngten Variante wurden zum Teil signifikant höhere Ertäge und N-Aufnahmen in Korn und Stroh ermittelt. Aus den dargestellten Versuchen kann gefolgert werden, daß die Düngerstickstoff-Effizienz verbessert werden kann, wenn vor allem die N-Immobilisation (und eventuell auch N-Verluste) in frühen Wachstumsstadien zwischen Bestockung und Schoßbeginn verringert und so die N-Verfügbarkeit erhöht wird. Es kann empfohlen werden Winterweizenbestände mit geringeren N-Mengen , als nach N-Sollwert 120 kg N ha,1 vorgesehen , anzudüngen und die Schossergabe entsprechend zu erhöhen. Die Verwendung von nitrathaltigen Düngern bei der Andüngung ist von Vorteil. [source]


Soil N dynamics in relation to leaf litter quality and soil fertility in north-western Patagonian forests

JOURNAL OF ECOLOGY, Issue 2 2003
Patricia Satti
Summary 1We examined the relationships among soil N dynamics, soil chemistry and leaf litter quality in 28 forest stands dominated by conifers, woody broad-leaf deciduous species or broad-leaf evergreens. Potential net N mineralization, net nitrification and microbial biomass N were used as indicators of soil N dynamics; pH, organic C, total N, exchangeable cations and extractable P as indicators of soil chemistry and N concentration, lignin concentration, C : N ratio and lignin : N ratio in senescent leaves as indicators of leaf litter quality. N dynamics were assessed in two consecutive years with contrasting precipitation. 2Net N mineralization was lower in stands of the three conifers and one of three broad-leaf evergreen species than in stands of the other six broad-leaf species (40,77 vs. 87,250 mg N kg,1 after 16-week incubations) and higher in the wetter year. 3The proportion of N nitrified was high beneath most species regardless of mineralization rates, soil N fertility and leaf litter quality, and was significantly higher for the wetter year. Ammonium was the predominant form of N in three sites affected by seasonal waterlogging and in two sites the predominant form changed from ammonium in the drier year to nitrate during the wetter year, probably due to differences in soil texture affecting soil moisture. 4Net N mineralization was linearly related to microbial biomass N, implying that the microbial activity per biomass unit was quite similar beneath all species. Constant microbial biomass during the wetter year suggested that as mineralization/nitrification increased, there was a higher potential risk of N losses. 5Although the litter lignin : N ratio allowed differentiation of soil N dynamics between broad-leaf species and conifers, its constant value (23,28) in all broad-leaf species made it a poor predictor of the differences found within this group. Across all sites and between broad-leaf species, soil N dynamics were best explained by a combination of leaf litter lignin and soil chemistry indicators, particularly soil total N for net N mineralization and net nitrification, and soil organic C for microbial biomass N. [source]


Effects of two contrasting agricultural land-use practices on nitrogen leaching in a sandy soil of Middle Germany

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2009
Christian Böhm
Abstract The objective of this study is to evaluate different agricultural land-use practices in terms of N leaching and to give recommendations for a sustainable agriculture on sandy soils in Middle Germany. Soil mineral N (Nmin) and leachate N were quantified at a sandy soil in N Saxony during 3 years. Two treatments were applied: intensive (I),using inorganic and organic fertilizer and pesticides, and organic (O),exclusively using organic fertilizer, legume-based crop rotation, and no pesticides. Split application of mineral fertilizers did not result in substantial N losses at treatment I. Legumes induced a considerable increase of soil mineral N and particularly of leachate mineral N (Nmin_perc) at treatment O. High Nmin_perc concentrations (up to 78 mg N L,1) were observed during as well as after the cultivation of legumes. These high Nmin_perc concentrations are the reason why clearly higher Nmin_perc losses were determined at treatment O (62 kg N ha,1 y,1) compared to treatment I (23,kg N ha,1 y,1). At both treatments, the quantity of N losses was strongly affected by the precipitation rates. Concentrations and losses of dissolved organic N (DONperc) were assessed as above average at both treatments. The results suggest that the DONperc concentration is influenced by precipitation, soil coverage, and organic fertilizers. Higher values were determined in the percolation water of treatment O. The average annual DONperc losses amounted to 15,kg N ha,1 at I and to 32 kg N ha,1 at O. The average monthly percentage of DONperc losses on the loss of the dissolved total N of percolation water (DTNperc) ranged between <1% and 55% at O and between 2% and 56% at I. For the whole measuring period of 29 months, the relative amounts of DONperc of DTNperc (21% at O and 25% at I) were more or less the same for both treatments. The results show that DONperc can contribute significantly to the total N loss, confirming the importance to consider this N fraction in N-leaching studies. It was concluded that at sandy sites, a split application of mineral fertilizers, as applied at treatment I, seems to be more expedient for limiting the N leaching losses than legume-based crop rotations. [source]