Multipotent Stem Cells (multipotent + stem_cell)

Distribution by Scientific Domains


Selected Abstracts


Neuropeptide Y in the olfactory microvillar cells

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006
Giorgia Montani
Abstract This paper examines a possible role of microvillar cells in coordinating cell death and regeneration of olfactory epithelial neurons. The olfactory neuroepithelium of mammals is a highly dynamic organ. Olfactory neurons periodically degenerate by apoptosis and as a consequence of chemical or physical damage. To compensate for this loss of cells, the olfactory epithelium maintains a lifelong ability to regenerate from a pool of resident multipotent stem cells. To assure functional continuity and histological integrity of the olfactory epithelium over a period of many decades, apoptosis and regeneration require to be precisely coordinated. Among the factors that have been implicated in mediating this regulation is the neuropeptide Y (NPY). Knockout mice that lack functional expression of this neurogenic peptide show defects in embryonic development of the olfactory epithelium and in its ability to regenerate in the adult. Here we show that, in postnatal olfactory epithelia, NPY is exclusively expressed by a specific population of microvillar cells. We previously characterized these cells as a novel type of putative chemosensory cells, which are provided with a phosphatidyl-inositol-mediated signal transduction cascade. Our findings allow for the first time to suggest that microvillar cells are involved in connecting apoptosis to neuronal regeneration by stimulus-induced release of NPY. [source]


Reproductive stem cell research and its application to urology

INTERNATIONAL JOURNAL OF UROLOGY, Issue 2 2008
Takehiko Ogawa
Abstract: Germ cells are defined by their innate potential to transmit genetic information to the next generation through fertilization. Males produce numerous sperm for long periods to maximize chances of fertilization. Key to the continuous production of large numbers of sperm are germline stem cells and their immediate daughter cells, functioning as transit amplifying cells. Recently, it has become possible to expand germline stem cells of rodents in vitro. In addition, multipotent stem cells, which are functionally the same as embryonic stem cells, have been established from neonatal mouse testes. These stem cells derived from the testis should contribute to biological research and technologies. On the other hand, the nature of human spermatogenesis is largely unknown due to the lack of an appropriate experimental system. However, the prevailing testicular sperm extraction procedure unraveled hitherto unknown facets of human spermatogenesis. The establishment of a culturing method for human spermatogonial stem cells in hopefully the near future would be a great benefit for achieving further insight into human spermatogenesis and should lead to more sophisticated diagnostic and therapeutic clinical measures for male infertility. [source]


Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair

JOURNAL OF ANATOMY, Issue 5 2008
G. Pasquinelli
Summary The fabrication of biodegradable 3-D scaffolds enriched with multipotent stem cells seems to be a promising strategy for the repair of irreversibly injured tissues. The fine mechanisms of the interaction of rat mesenchymal stem cells (rMSCs) with a hyaluronan-based scaffold, i.e. HYAFF®11, were investigated to evaluate the potential clinical application of this kind of engineered construct. rMSCs were seeded (2 × 106 cells cm,2) on the scaffold, cultured up to 21 days and analysed using appropriate techniques. Light (LM), scanning (SEM) and transmission (TEM) electron microscopy of untreated scaffold samples showed that scaffolds have a highly porous structure and are composed of 15-µm-thick microfibres having a rough surface. As detected by trypan blue stain, cell adhesion was high at day 1. rMSCs were viable up to 14 days as shown by CFDA assay and proliferated steadily on the scaffold as revealed by MTT assay. LM showed rMSCs in the innermost portions of the scaffold at day 3. SEM revealed a subconfluent cell monolayer covering 40 ± 10% of the scaffold surface at day 21. TEM of early culture showed rMSCs wrapping individual fibres with regularly spaced focal contacts, whereas confocal microscopy showed polarized expression of CD44 hyaluronan receptor; TEM of 14-day cultures evidenced fibronexus formation. Immunohistochemistry of 21-day cultures showed that fibronectin was the main matrix protein secreted in the extracellular space; decorin and versican were seen in the cell cytoplasm only and type IV collagen was minimally expressed. The expression of CD90, a marker of mesenchymal stemness, was found unaffected at the end of cell culture. Our results show that HYAFF®11 scaffolds support the adhesion, migration and proliferation of rMSCs, as well as the synthesis and delivery of extracellular matrix components under static culture conditions without any chemical induction. The high retention rate and viability of the seeded cells as well as their fine modality of interaction with the substrate suggest that such scaffolds could be potentially useful when wide tissue defects are to be repaired as in the case of cartilage repair, wound healing and large vessel replacement. [source]


Isolation of epithelial stem cells from dermis by a three-dimensional culture system,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2006
Reinhold J. Medina
Abstract Skin is a representative self-renewing tissue containing stem cells. Although many attempts have been made to define and isolate skin-derived stem cells, establishment of a simple and reliable isolation procedure remains a goal to be achieved. Here, we report the isolation of cells having stem cell properties from mouse embryonic skin using a simple selection method based on an assumption that stem cells may grow in an anchorage-independent manner. We inoculated single cell suspensions prepared from mouse embryonic dermis into a temperature-sensitive gel and propagated the resulting colonies in a monolayer culture. The cells named dermis-derived epithelial progenitor-1 (DEEP) showed epithelial morphology and grew rapidly to a more than 200 population doubling level over a period of 250 days. When the cells were kept confluent, they spontaneously formed spheroids and continuously grew even in spheroids. Immunostaining revealed that all of the clones were positive for the expression of cytokeratin-8, ,18, ,19, and E-cadherin and negative for the expression of cytokeratin-1, ,5, ,6, ,14, ,20, vimentin, nestin, a ckit. Furthermore, they expressed epithelial stem cell markers such as p63, integrin ,1, and S100A6. On exposure to TGF, in culture, some of DEEP-1 cells expressed ,-smooth muscle actin. When the cells were transplanted into various organs of adult SCID mice, a part of the inoculated cell population acquired neural, hepatic, and renal cell properties. These results indicate that the cells we isolated were of epithelial stem cell origin and that our new approach is useful for isolation of multipotent stem cells from skin tissues. J. Cell. Biochem. 98: 174,184, 2006. © 2006 Wiley-Liss, Inc. [source]


Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 7 2008
Winston Costa Pereira
Abstract Mesenchymal stem cells (MSCs) are considered to be a source of stem cells in tissue regeneration and therapeutics, due to their ability to undergo proliferation and differentiation. Complications associated with bone marrow-derived MSCs has prompted researchers to explore alternative sources of MSCs. The human umbilical cord is one such source; it is easily available and its collection is non-invasive. The sources of MSCs are non-controversial and thus they are not subjected to ethical constraints, as in the case of embryonic stem cells. MSCs are multipotent stem cells and has the ability to differentiate into various cell types of the mesodermal lineage. The aim of this study was to establish a reproducible method for the isolation of MSCs from human umbilical cord, as the few methods published till date gave inconsistent results and had a mixed population of contaminating endothelial cells. In our isolation strategy, we isolated a pure population of MSCs from Wharton's jelly of the human umbilical cord, which is very rich in collagen, and we used a high concentration of collagenase enzyme in the isolation of MSCs. Extensive phenotypic characterization analysis of these cells, using flow cytometry and antibody staining methods, have shown that we were able to isolate a pure population of the mesenchymal lineage cells that is devoid of haematopoietic and endothelial cell contaminants. When these MSCs were subjected to cardiomyocyte differentiation, we observed a change in the morphological characteristics, which was accompanied by the formation of myotube structures and spontaneous beating after 21 days. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Recent progress in studies of infantile hemangioma

THE JOURNAL OF DERMATOLOGY, Issue 4 2010
Masatoshi JINNIN
Abstract A hallmark of infantile hemangioma, the most common tumor of infancy, is its dramatic growth after birth, by diffuse proliferation of immature endothelial cells, followed by spontaneous regression. The growth and involution of infantile hemangioma is quite different from other vascular anomalies, which do not regress and can occur at any time during life. Some hemangioma lesions can be extremely disfiguring and destructive to normal tissue and may even be life-threatening. Unfortunately, existing therapeutic approaches have limited success and significant adverse effects of some treatment modalities limit their use. Better understanding of the pathogenesis of hemangioma will enable the development of better therapeutic strategies. Here, we review recent studies and new hypotheses on the pathogenesis of the tumor. Detailed mechanisms of activated vascular endothelial growth factor signaling in tumor cells, identification of their origin and characterization of multipotent stem cells that can give rise to infantile hemangioma are shedding new light on this intriguing vascular tumor. [source]