Multifunctional Enzymes (multifunctional + enzyme)

Distribution by Scientific Domains
Distribution within Chemistry


Selected Abstracts


SSAO/VAP-1 protein expression during mouse embryonic development

DEVELOPMENTAL DYNAMICS, Issue 9 2008
Tony Valente
Abstract SSAO/VAP-1 is a multifunctional enzyme depending on in which tissue it is expressed. SSAO/VAP-1 is present in almost all adult mammalian tissues, especially in highly vascularised ones and in adipocytes. SSAO/VAP-1 is an amine oxidase able to metabolise various endogenous or exogenous primary amines. Its catalytic activity can lead to cellular oxidative stress, which has been implicated in several pathologies (atherosclerosis, diabetes, and Alzheimer's disease). The aim of this work is to achieve a study of SSAO/VAP-1 protein expression during mouse embryogenesis. Our results show that SSAO/VAP-1 appears early in the development of the vascular system, adipose tissue, and smooth muscle cells. Moreover, its expression is strong in several epithelia of the sensory organs, as well as in the development of cartilage sites. Altogether, this suggests that SSAO/VAP-1 enzyme could be involved in the differentiation processes that take place during embryonic development, concretely in tissue vascularisation. Developmental Dynamics 237:2585,2593, 2008. © 2008 Wiley-Liss, Inc. [source]


Novel type III polyketide synthases from Aloe arborescens

FEBS JOURNAL, Issue 8 2009
Yuusuke Mizuuchi
Aloe arborescens is a medicinal plant rich in aromatic polyketides, such as pharmaceutically important aloenin (hexaketide), aloesin (heptaketide) and barbaloin (octaketide). Three novel type III polyketide synthases (PKS3, PKS4 and PKS5) were cloned and sequenced from the aloe plant by cDNA library screening. The enzymes share 85,96% amino acid sequence identity with the previously reported pentaketide chromone synthase and octaketide synthase. Recombinant PKS4 and PKS5 expressed in Escherichia coli were functionally identical to octaketide synthase, catalyzing the sequential condensations of eight molecules of malonyl-CoA to produce octaketides SEK4/SEK4b. As in the case of octaketide synthase, the enzymes are possibly involved in the biosynthesis of the octaketide barbaloin. On the other hand, PKS3 is a multifunctional enzyme that produces a heptaketide aloesone (i.e. the aglycone of aloesin) as a major product from seven molecules of malonyl-CoA. In addition, PKS3 also afforded a hexaketide pyrone (i.e. the precursor of aloenin), a heptaketide 6-(2-acetyl-3,5-dihydroxybenzyl)-4-hydroxy-2-pyrone, a novel heptaketide 6-(2-(2,4-dihydroxy-6-methylphenyl)-2-oxoethyl)-4-hydroxy-2-pyrone and octaketides SEK4/SEK4b. This is the first demonstration of the enzymatic formation of the precursors of the pharmaceutically important aloesin and aloenin by a wild-type PKS obtained from A. arborescens. Interestingly, the aloesone-forming activity was maximum at 50 °C, and the novel heptaketide pyrone was non-enzymatically converted to aloesone. In PKS3, the active-site residue 207, which is crucial for controlling the polyketide chain length depending on the steric bulk of the side chain, is uniquely substituted with Ala. Site-directed mutagenesis demonstrated that the A207G mutant dominantly produced the octaketides SEK4/SEK4b, whereas the A207M mutant yielded a pentaketide 5,7-dihydroxy-2-methylchromone. [source]


Purification and characterization of the single-strand-specific and guanylic-acid-preferential deoxyribonuclease activity of the extracellular nuclease from Basidiobolus haptosporus

FEBS JOURNAL, Issue 16 2000
Neelam A. Desai
An extracellular nuclease from Basidiobolus haptosporus (designated as nuclease Bh1) was purified to homogeneity by ammonium sulfate precipitation, heat treatment, negative adsorption on DEAE-cellulose, and chromatography on phenyl-Sepharose followed by FPLC on phenyl-Superose. The overall yield was 26%. The Mr of the purified enzyme, determined by gel filtration, was 41 000 whereas by SDS/PAGE (after deglycosylation) it was 30 000. It is a glycoprotein with a pI of 6.8. The optimum pH and temperature for DNA hydrolysis were 8.5 and 60 °C, respectively. Nuclease Bh1 is a metalloprotein but has no obligate requirement for metal ions to be active, nor is its activity stimulated in the presence of metal ions. The enzyme was inhibited by Zn2+, Ag2+, Hg2+, Fe3+ and Al3+, inorganic phosphate, pyrophosphate, dithiothreitol, 2-mercaptoethanol, NaCl and KCl. It was stable to high concentrations of organic solvents and urea but susceptible to low concentrations of SDS and guanidine hydrochloride. Nuclease Bh1 is a multifunctional enzyme and its substrate specificity is in the order of ssDNA , 3,AMP , RNA > dsDNA. Studies on its mode of action showed that it cleaved supercoiled pUC 18 DNA and phage M13 DNA, endonucleolytically, generating single base nicks. The enzyme hydrolyzed DNA with preferential liberation of 5,dGMP, suggesting it to be a guanylic acid preferential endoexonuclease. 5,dGMP, the end product of hydrolysis, was a competitive inhibitor of the enzyme. The absence of 5,dCMP as a hydrolytic product, coupled with the resistance of (dC)10 and deoxyribodinucleoside monophosphates having cytosine either at the 3, or the 5, end, indicates that C-linkages are resistant to cleavage by nuclease Bh1. [source]


Influenza virus RNA polymerase PA subunit is a novel serine protease with Ser624 at the active site

GENES TO CELLS, Issue 2 2001
Koyu Hara
Background Influenza virus RNA polymerase is a multifunctional enzyme that catalyses both transcription and replication of the RNA genome. The function of the influenza virus RNA polymerase PA subunit in viral replication is poorly understood, although the enzyme is known to be required for cRNA , vRNA synthesis. The protease related activity of PA has been discussed ever since protease-inducing activity was demonstrated in transfection experiments. Results PA protein was highly purified from insect cells infected with the recombinant baculovirus carrying PA cDNA, and a novel chymotrypsin-type serine protease activity was identified with the synthetic peptide, Suc-LLVY-MCA, in the PA protein. [3H]DFP was crosslinked with PA and a mutational analysis revealed that serine624 was as an active site for the protease activity. Conclusions These results constitute the demonstration of protease activity in PA subunit of the influenza virus RNA polymerase complexes. [source]


Crystallization and preliminary X-ray analysis of human liver ,-enolase

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2009
Juan Wang
Enolase is a multifunctional enzyme that plays important roles in many biological and disease processes. ,-Enolase from human liver (hENO1) was expressed as a soluble protein and purified by affinity column chromatography and gel filtration. Crystals were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.5,Å resolution. The crystals belonged to space group P21, with unit-cell parameters a = 72.85, b = 66.02, c = 79.43,Å, , = 94.54°. [source]


Functional analysis of aromatic biosynthetic pathways in Pseudomonas putida KT2440

MICROBIAL BIOTECHNOLOGY, Issue 1 2009
M. Antonia Molina-Henares
Summary Pseudomonas putida KT2440 is a non-pathogenic prototrophic bacterium with high potential for biotechnological applications. Despite all that is known about this strain, the biosynthesis of essential chemicals has not been fully analysed and auxotroph mutants are scarce. We carried out massive mini-Tn5 random mutagenesis and screened for auxotrophs that require aromatic amino acids. The biosynthesis of aromatic amino acids was analysed in detail including physical and transcriptional organization of genes, complementation assays and feeding experiments to establish pathway intermediates. There is a single pathway from chorismate leading to the biosynthesis of tryptophan, whereas the biosynthesis of phenylalanine and tyrosine is achieved through multiple convergent pathways. Genes for tryptophan biosynthesis are grouped in unlinked regions with the trpBA and trpGDE genes organized as operons and the trpI, trpE and trpF genes organized as single transcriptional units. The pheA and tyrA gene-encoding multifunctional enzymes for phenylalanine and tyrosine biosynthesis are linked in the chromosome and form an operon with the serC gene involved in serine biosynthesis. The last step in the biosynthesis of these two amino acids requires an amino transferase activity for which multiple tyrB -like genes are present in the host chromosome. [source]


Brassinosteroid biosynthesis and inactivation

PHYSIOLOGIA PLANTARUM, Issue 4 2006
Sunghwa Choe
The term brassinosteroids (BRs) refers to the growth-promoting plant steroidal hormones. Various developmental programs including but not limited to cell elongation, stress tolerance, and skoto-/photo-morphogenesis are controlled by subnanomolar concentrations of BRs. Accordingly, BR mutants that are defective in BR biosynthetic or signaling pathways usually display dwarfism. Characterization of numerous BR dwarf mutants isolated from Arabidopsis, pea, tomato, and rice greatly contributed to our understanding of BR biology. Recently, an enzyme that mediates the final step in the BR biosynthetic pathways has been characterized by two different groups. The brassinolide synthases (Cytochrome P450s 85A2 and 85A3) are multifunctional enzymes that catalyze the last three consecutive steps in BR biosynthetic pathways, namely, C-6 hydroxylation, dehydrogenation, and Baeyer-Villiger type oxidation. In addition, many of the previously unknown steps have been genetically characterized. This review aims to summarize the knowledge that has been developed during the last 2,3 years in this field of BR biosynthesis and inactivation research. [source]


Imperfect pseudo-merohedral twinning in crystals of fungal fatty acid synthase

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2009
Simon Jenni
The recent high-resolution structures of fungal fatty acid synthase (FAS) have provided new insights into the principles of fatty acid biosynthesis by large multifunctional enzymes. The crystallographic phase problem for the 2.6,MDa fungal FAS was initially solved to 5,Å resolution using two crystal forms from Thermomyces lanuginosus. Monoclinic crystals in space group P21 were obtained from orthorhombic crystals in space group P212121 by dehydration. Here, it is shown how this space-group transition induced imperfect pseudo-merohedral twinning in the monoclinic crystal, giving rise to a Moiré pattern-like interference of the two twin-related reciprocal lattices. The strategy for processing the twinned diffraction images and obtaining a quantitative analysis is presented. The twinning is also related to the packing of the molecules in the two crystal forms, which was derived from self-rotation function analysis and molecular-replacement solutions using a low-resolution electron microscopy map as a search model. [source]


Deciphering the physiological blueprint of a bacterial cell

BIOESSAYS, Issue 6 2010
Revelations of unanticipated complexity in transcriptome, proteome
Abstract During the last few months, several pioneer genome-wide transcriptomic, proteomic and metabolomic studies have revolutionised the understanding of bacterial biological processes, leading to a picture that resembles eukaryotic complexity. Technological advances such as next-generation high-throughput sequencing and high-density oligonucleotide microarrays have allowed the determination, in several bacteria, of the entire boundaries of all expressed transcripts. Consequently, novel RNA-mediated regulatory mechanisms have been discovered including multifunctional RNAs. Moreover, resolution of bacterial proteome organisation (interactome) and global protein localisation (localizome) have unveiled an unanticipated complexity that highlights the significance of protein multifunctionality and localisation in the cell. Also, analysis of a complete bacterial metabolic network has again revealed a high fraction of multifunctional enzymes and an unexpectedly high level of metabolic responses and adaptation. Altogether, these novel approaches have permitted the deciphering of the entire physiological landscape of one of the smallest bacteria, Mycoplasma pneumoniae. Here, we summarise and discuss recent findings aimed at defining the blueprint of any prokaryote. [source]


Crystallization and preliminary X-ray analysis of glutathione transferases from cyanobacteria

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 5 2009
Susanne C. Feil
Glutathione S -transferases (GSTs) are a group of multifunctional enzymes that are found in animals, plants and microorganisms. Their primary function is to remove toxins derived from exogenous sources or the products of metabolism from the cell. Mammalian GSTs have been extensively studied, in contrast to bacterial GSTs which have received relatively scant attention. A new class of GSTs called Chi has recently been identified in cyanobacteria. Chi GSTs exhibit a high glutathionylation activity towards isothiocyanates, compounds that are normally found in plants. Here, the crystallization of two GSTs are presented: TeGST produced by Thermosynechococcus elongates BP-1 and SeGST from Synechococcus elongates PCC 6301. Both enzymes formed crystals that diffracted to high resolution and appeared to be suitable for further X-ray diffraction studies. The structures of these GSTs may shed further light on the evolution of GST catalytic activity and in particular why these enzymes possess catalytic activity towards plant antimicrobial compounds. [source]


Recent advancements in the biosynthetic mechanisms for polyketide-derived mycotoxins

BIOPOLYMERS, Issue 9 2010
Justin Huffman
Abstract Polyketides (PKs) are a large group of natural products produced by microorganisms and plants. They are biopolymers of acetate and other short carboxylates and are biosynthesized by multifunctional enzymes called polyketide synthases (PKSs). This review discusses the biosynthesis of four toxic PK, aflatoxins, fumonisins, ochratoxins (OTs), and zearalenone. These metabolites are structurally diverse and differ in their mechanisms of toxicity. However, they are all of concern in food safety and agriculture because of their toxic properties and their frequent accumulation in crops used for food and feed. The focus is on the recent advancements in the understanding of the molecular mechanisms for the biosynthesis of these mycotoxins. Several of the mycotoxin PKSs have been genetically and biochemically studied while other PKSs remain to be investigated. Multiple post-PKS modifications are often required for the maturation of the mycotoxins. Many of these modification steps for aflatoxins and fumonisins are well established while the post-PKS modifications for zearalenone and OTs remain to be biochemically characterized. More efforts are needed to completely illustrate the biosynthetic mechanisms for this important group of PKs. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 764,776, 2010. [source]