Mutual Solubility (mutual + solubility)

Distribution by Scientific Domains


Selected Abstracts


Description of the mutual solubilities of fatty acids and water with the CPA EoS

AICHE JOURNAL, Issue 6 2009
M. B. Oliveira
Abstract Data for the mutual solubilities of fatty acid + water mixtures are scarce and so measurements for seven fatty acid (C5 -C10, C12) + water systems were carried out. This new experimental data was successfully modelled with the cubic plus association EoS. Using data from C6 to C10 and the Elliot's cross-associating combining rule a correlation for the kij binary interaction parameter, as a function of the acid chain length, is proposed. The mutual solubilities of water and fatty acids can be adequately described with average deviations inferior to 6% for the water rich phase and 30% for the acid rich phase. Furthermore, satisfactory predictions of solid-liquid equilibria of seven fatty acids (C12 -C18) + water systems were achieved based only on the kij correlation obtained from liquid,liquid equilibria data. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Nanoscale lead and noble gas inclusions in aluminum: Structures and properties

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 5-6 2004
Erik Johnson
Abstract Transmission electron microscopy has been used for structural and physical characterization of nanoscale inclusions of lead and noble gases in aluminum. When the inclusion sizes approach nanoscale dimensions, many of their properties are seen to deviate from similar properties in bulk and in most cases the deviations will increase as the inclusion sizes decrease. Binary alloys of lead and noble gases with aluminum are characterized by extremely low mutual solubilities and inclusions will, therefore, exist as practically pure components embedded in the aluminum matrix. Furthermore, the thermal vacancy mobility in aluminum at and above room temperature is sufficiently high to accommodate volume strains associated with the inclusions thus leading to virtually strain free crystals. The inclusions grow in parallel cube alignment with the aluminum matrix and have a cuboctahedral shape, which reflects directly the anisotropy of the interfacial energies. Inclusions in grain boundaries can have single crystalline or bicrystalline morphology that can be explained from a generalized Wulff analysis such as the ,-vector construction. The inclusions have been found to display a variety of nanoscale features such as high Laplace pressure, size-dependent superheating during melting, deviations from the Wulff shape displaying magic size effects, a shape dependence of edge energy, and so on. All these effects have been observed and monitored by TEM using conventional imaging conditions and high-resolution conditions in combination with in-situ analysis at elevated temperatures. Microsc. Res. Tech. 64:356,372, 2004. © 2004 Wiley-Liss, Inc. [source]


Aqueous fluids at elevated pressure and temperature

GEOFLUIDS (ELECTRONIC), Issue 1-2 2010
A. LIEBSCHER
Abstract The general major component composition of aqueous fluids at elevated pressure and temperature conditions can be represented by H2O, different non-polar gases like CO2 and different dissolved metal halides like NaCl or CaCl2. At high pressure, the mutual solubility of H2O and silicate melts increases and also silicates may form essential components of aqueous fluids. Given the huge range of P,T,x regimes in crust and mantle, aqueous fluids at elevated pressure and temperature are highly variable in composition and exhibit specific physicochemical properties. This paper reviews principal phase relations in one- and two-component fluid systems, phase relations and properties of binary and ternary fluid systems, properties of pure H2O at elevated P,T conditions, and aqueous fluids in H2O,silicate systems at high pressure and temperature. At metamorphic conditions, even the physicochemical properties of pure water substantially differ from those at ambient conditions. Under typical mid- to lower-crustal metamorphic conditions, the density of pure H2O is , the ion product Kw = 10,7.5 to approximately 10,12.5, the dielectric constant , = 8,25, and the viscosity , = 0.0001,0.0002 Pa sec compared to , Kw = 10,14, , = 78 and , = 0.001 Pa sec at ambient conditions. Adding dissolved metal halides and non-polar gases to H2O significantly enlarges the pressure,temperature range, where different aqueous fluids may co-exist and leads to potential two-phase fluid conditions under must mid- to lower-crustal P,T conditions. As a result of the increased mutual solubility between aqueous fluids and silicate melts at high pressure, the differences between fluid and melt vanishes and the distinction between fluid and melt becomes obsolete. Both are completely miscible at pressures above the respective critical curve giving rise to so-called supercritical fluids. These supercritical fluids combine comparably low viscosity with high solute contents and are very effective metasomatising agents within the mantle wedge above subduction zones. [source]


Formation and characterization of polymersomes made by a solvent injection method

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 6 2007
M. E. Yildiz
Abstract In this article a solvent injection method is described for vesicle formation using poly(butadiene)- b-poly(acrylic acid) diblock copolymers as the amphiphilic molecules. Vesicles composed of polymer bilayers are commonly referred to as polymersomes. Solvent injection is shown to be a rapid method for polymersome formation suitable to make large volumes of polymersome solution. The method can be manipulated to obtain a wide range of vesicle sizes depending on the polymer concentration and preparation conditions. Polymersome solutions in this study are characterized using dynamic light scattering (DLS), fluorescent microscopy, and electron microscopy. Polymersome sizes range from tens of nanometers to several microns. The membrane thickness of smaller polymersomes is found to lie between 14,20,nm. Larger polymersomes are found to have somewhat thicker membranes. The procedure involves the addition of polymers dissolved in an organic solvent to a stirred aqueous solution. The formation of polymersomes by this method is proposed to be governed by the limited mutual solubility of the two solvents and the simultaneous diffusion of solvent and water out of and in to initially formed organic solvent droplets. Copyright © 2007 John Wiley & Sons, Ltd. [source]


The Relevance of the Collaborative Effect in Determining the Performances of Photorefractive Polymer Materials

CHEMPHYSCHEM, Issue 2 2010
Rocco Angelone Dr.
Abstract A derivative of 2-methylindole, 3-[2-(4-nitrophenyl)ethenyl]-1-allyl-2-methylindole, NPEMI-A, is studied for its photoconductivity and photorefractivity behaviour. Its blends with the organic polymer poly-(2,3-dimethyl- N -vinylindole), PVDMI, are also investigated. Due to the expected and devised mutual solubility of the two components of the blends, it is possible to carry out measurements with the weight percent of the chromophore NPEMI-A changing from zero to 100. Films were produced by a squeezing process between two ITO-covered glass sheets. No opacity phenomena, that are so common for many other organic blends due to the segregation of the dissolved chromophore, are observed. The photorefractive optical gain ,2 is obtained as a function of the chromophore content. Differential scanning calorimetry measurements (DSC) are also carried out to obtain the whole change of the glass transition temperature Tg as a function of the amount of chromophore contained in the blends. From the experimental trend of Tg a meaningful quantitative estimate of the value of the electrostatic interactions acting in the studied blends, is obtained. The importance of the value of Tg, and of the electrostatic interactions, in determining the extent of the photorefractivity is clearly evident. The results are compared for NPEMI-A (,2=210 cm,1) and for NPEMI-E (,2 , 2000 cm,1) that has a N-2-ethylhexyl group instead of a N-allyl group. The Pockels and Kerr contributions and,for the first time,a "collaborative effect" of the photorefractivity of NPEMI-A are distinguished and quantitatively evaluated. [source]