Mutation Screening (mutation + screening)

Distribution by Scientific Domains
Distribution within Medical Sciences

Terms modified by Mutation Screening

  • mutation screening methods

  • Selected Abstracts


    High-resolution Melting Facilitates Mutation Screening of PYGM in Patients with McArdle Disease

    ANNALS OF HUMAN GENETICS, Issue 3 2009
    Morten Duno
    Summary Mutations in PYGM, encoding the muscle-specific glycogen phosphorylase (myophosphorylase), are responsible for McArdle disease. Among Caucasians, a large proportion of patients are homozygous for the R50X mutation, but other mutations can affect all the 20 exons of PYGM, making mutation detection laborious. We have developed a high-resolution melting (HRM) assay for mutation detection in PYGM. Twelve McArdle patients were investigated, in whom pre-screening had ruled out homozygosity or compound heterozygosity for the two common G205S and R50X mutations. In total, we identified 16 different variations. Thirteen of these are pathogenic, and three were classified as polymorphisms. Nine variations had not previously been described. One of the novel mutations, c.2430C > T, was initially predicted to result in a silent G810G change, but cDNA analysis demonstrated that the mutation led to abnormal mRNA processing. The HRM protocol reduced the need for direct sequencing by approximately 85%, and is a good approach to search for new mutations in PYGM. [source]


    Prevalence and clinical characteristics of maternally inherited diabetes and deafness caused by the mt3243A > G mutation in young adult diabetic subjects in Sri Lanka

    DIABETIC MEDICINE, Issue 3 2008
    P. Katulanda
    Abstract Aims The maternally inherited mt3243A > G mutation is associated with a variable clinical phenotype including diabetes and deafness (MIDD). We aimed to determine the prevalence and clinical characteristics of MIDD in a large South Asian cohort of young adult-onset diabetic patients from Sri Lanka. Methods DNA was available from 994 subjects (age of diagnosis 16,40 years, age at recruitment , 45 years). Mutation screening was performed using a QRT-PCR method on an ABI 7900HT system using sequence-specific probes. Samples with heteroplasmy , 5.0% were considered positive. Results Nine (four males) mutation-positive subjects were identified (prevalence 0.9%). They were diagnosed at a younger age (25.9 ± 4.8 years vs. 31.9 ± 5.6 years, P = 0.002) and were lean (body mass index [BMI] 18.7 ± 2.7 kg/m2 vs. 24.7 ± 4.0 kg/m2, P < 0.001) compared to NMCs. One mutation-positive subject (11.1%) had metabolic syndrome, compared to 633 (64.3%) of NMCs. Insulin therapy within 6 months of diagnosis was used in four (44.0%) carriers compared to 6.9% of NMCs (P = 0.002). Combined screening criteria of any two of maternal history of diabetes, personal history of hearing impairment and family history of hearing impairment only identified five (55%) of the carriers, with a positive predictive value of 7.4%. Conclusions The prevalence of mt3243A > G mutation among young adult-onset diabetic subjects from Sri Lanka was 0.9%. Our study demonstrates that a maternal family history of diabetes and either a personal and/or family history of deafness only distinguish half of patients with MIDD from Sri Lankan subjects with young-onset diabetes. [source]


    Human ameloblastin gene: genomic organization and mutation analysis in amelogenesis imperfecta patients

    EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 1 2001
    Carina Kärrman Mårdh
    A gene encoding the enamel protein ameloblastin (AMBN) was recently localized to a region on chromosome 4q21 containing a gene for the inherited enamel defect local hypoplastic amelogenesis imperfecta (AIH2). Ameloblastin protein is located at the Tomes processes of secretory ameloblasts and in the sheath space between rod-interrod enamel, and the AMBN gene therefore represents a viable candidate gene for local hypoplastic amelogenesis imperfecta (AI). In this study, the genomic organization of human AMBN was characterized. The gene was shown to consist of 13 exons and 12 introns. An alternatively spliced 45 bp sequence was shown not to represent a separate exon and is most likely spliced by the use of a cryptic splice site. The finding that there were no recombinations between an intragenic microsatellite and AIH2 encouraged us to evaluate this gene's potential role as a candidate gene for local hypoplastic AI. Mutation screening was performed on all 13 exons in 20 families and 8 sporadic cases with 6 different forms of AI. DNA variants were found but none that was associated exclusively with local hypoplastic AI or any of the other variants of AI in the identified Swedish families. This study excludes the coding regions and the splice sites of AMBN from a causative role in the pathogenesis of AIH2. [source]


    A Novel ATP1A2 Gene Mutation in an Irish Familial Hemiplegic Migraine Kindred

    HEADACHE, Issue 1 2008
    Desiree M. Fernandez MRCP
    Objective., We studied a large Irish Caucasian pedigree with familial hemiplegic migraine (FHM) with the aim of finding the causative gene mutation. Background., FHM is a rare autosomal-dominant subtype of migraine with aura, which is linked to 4 loci on chromosomes 19p13, 1q23, 2q24, and 1q31. The mutations responsible for hemiplegic migraine have been described in the CACNA1A gene (chromosome 19p13), ATP1A2 gene (chromosome 1q23), and SCN1A gene (chromosome 2q24). Methods., We performed linkage analyses in this family for chromosome 1q23 and performed mutation analysis of the ATP1A2 gene. Results., Linkage to the FHM2 locus on chromosome 1 was demonstrated. Mutation screening of the ATP1A2 gene revealed a G to C substitution in exon 22 resulting in a novel protein variant, D999H, which co-segregates with FHM within this pedigree and is absent in 50 unaffected individuals. This residue is also highly conserved across species. Conclusions., We propose that D999H is a novel FHM ATP1A2 mutation. [source]


    Mutation screening of the fibrillin-1 (FBN1) gene in 76 unrelated patients with Marfan syndrome or Marfanoid features leads to the identification of 11 novel and three previously reported mutations,,

    HUMAN MUTATION, Issue 5 2002
    Kathrin Rommel
    Abstract Mutations in the gene encoding fibrillin-1 (FBN1) cause Marfan syndrome (MFS) and other related connective tissue disorders. In this study we performed SSCP to analyze all 65 exons of the FBN1 gene in 76 patients presenting with classical MFS or related phenotypes. We report 7 missense mutations, 3 splice site alterations, one indel mutation, one nonsense mutation and two mutations causing frameshifts: a 16bp deletion and a single nucleotide insertion. 5 of the missense mutations (Y1101C, C1806Y, T1908I, G1919D, C2251R) occur in calcium-binding Epidermal Growth Factor-like (EGFcb) domains of exons 26, 43, 46 and 55, respectively. One missense mutation (V449I) substitutes a valine residue in the non-calcium-binding epidermal growth factor like domain (EGFncb) of exon 11. One missense mutation (G880S) affects the "hybrid" motif in exon 21 by replacing glycine to serine. The 3 splice site mutations detected are: IVS1,1G>A in intron 1, IVS38-1G>A in intron 38 and IVS46+5G>A in intron 46. C628delinsK was identified in exon 15 leading to the substitution of a conserved cysteine residue. Furthermore two frameshift mutations were found in exon 15 (1904-1919del ) and exon 63 (8025insC) leading to premature termination codons (PTCs) in exon 17 and 64 respectively. Finally we identified a nonsense mutation (R429X) located in the proline rich domain in exon 10 of the FBN1 gene. Y1101C, IVS46+5G>A and R429X have been reported before. © 2002 Wiley-Liss, Inc. [source]


    Sequestosome 1 Mutations in Paget's Disease of Bone in Australia: Prevalence, Genotype/Phenotype Correlation, and a Novel Non-UBA Domain Mutation (P364S) Associated With Increased NF-,B Signaling Without Loss of Ubiquitin Binding,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2009
    Sarah L Rea
    Abstract Previously reported Sequestosome 1(SQSTM1)/p62 gene mutations associated with Paget's disease of bone (PDB) cluster in, or cause deletion of, the ubiquitin-associated (UBA) domain. The aims of this study were to examine the prevalence of SQSTM1 mutations in Australian patients, genotype/phenotype correlations and the functional consequences of a novel point mutation (P364S) located upstream of the UBA. Mutation screening of the SQSTM1 gene was conducted on 49 kindreds with PDB. In addition, 194 subjects with apparently sporadic PDB were screened for the common P392L mutation by restriction enzyme digestion. HEK293 cells stably expressing RANK were co-transfected with expression plasmids for SQSTM1 (wildtype or mutant) or empty vector and a NF-,B luciferase reporter gene. GST-SQSTM1 (wildtype and mutant) proteins were used in pull-down assays to compare monoubiquitin-binding ability. We identified SQSTM1 mutations in 12 of 49 families screened (24.5%), comprising 9 families with the P392L mutation and 1 family each with the following mutations: K378X, 390X, and a novel P364S mutation in exon 7, upstream of the UBA. The P392L mutation was found in 9 of 194 (4.6%) patients with sporadic disease. Subjects with SQSTM1 mutations had more extensive disease, but not earlier onset, compared with subjects without mutations. In functional studies, the P364S mutation increased NF-,B activation compared with wildtype SQSTM1 but did not reduce ubiquitin binding. This suggests that increased NF-,B signaling, but not the impairment of ubiquitin binding, may be essential in the pathogenesis of PDB associated with SQSTM1 mutations. [source]


    Novel UBA Domain Mutations of SQSTM1 in Paget's Disease of Bone: Genotype Phenotype Correlation, Functional Analysis, and Structural Consequences

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2004
    Lynne J Hocking
    Abstract Three novel missense mutations of SQSTM1 were identified in familial PDB, all affecting the UBA domain. Functional and structural analysis showed that disease severity was related to the type of mutation but was unrelated to the polyubiquitin-binding properties of the mutant UBA domain peptides. Introduction: Mutations affecting the ubiquitin-associated (UBA) domain of Sequestosome 1 (SQSTM1) gene have recently been identified as a common cause of familial Paget's disease of bone (PDB), but the mechanisms responsible are unclear. We identified three novel SQSTM1 mutations in PDB, conducted functional and structural analyses of all PDB-causing mutations, and studied the relationship between genotype and phenotype. Materials and Methods: Mutation screening of the SQSTM1 gene was conducted in 70 kindreds with familial PDB. We characterized the effect of the mutations on structure of the UBA domain by protein NMR, studied the effects of the mutant UBA domains on ubiquitin binding, and looked at genotype-phenotype correlations. Results and Conclusions: Three novel missense mutations affecting the SQSTM1 UBA domain were identified, including a missense mutation at codon 411 (G411S), a missense mutation at codon 404 (M404V), and a missense mutation at codon 425 (G425R). We also identified a deletion leading to a premature stop codon at 394 (L394X). None of the mutations were found in controls. Structural analysis showed that M404V and G425R involved residues on the hydrophobic surface patch implicated in ubiquitin binding, and consistent with this, the G425R and M404V mutants abolished the ability of mutant UBA domains to bind polyubiquitin chains. In contrast, the G411S and P392L mutants bound polyubiquitin chains normally. Genotype-phenotype analysis showed that patients with truncating mutations had more extensive PDB than those with missense mutations (bones involved = 6.05 ± 2.71 versus 3.45 ± 2.46; p < 0.0001). This work confirms the importance of UBA domain mutations of SQSTM1 as a cause of PDB but shows that there is no correlation between the ubiquitin-binding properties of the different mutant UBA domains and disease occurrence or extent. This indicates that the mechanism of action most probably involves an interaction between SQSTM1 and a hitherto unidentified protein that modulates bone turnover. [source]


    Type V Osteogenesis Imperfecta: A New Form of Brittle Bone Disease,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2000
    Francis H. Glorieux
    Abstract Osteogenesis imperfecta (OI) is commonly subdivided into four clinical types. Among these, OI type IV clearly represents a heterogeneous group of disorders. Here we describe 7 OI patients (3 girls), who would typically be classified as having OI type IV but who can be distinguished from other type IV patients. We propose to call this disease entity OI type V. These children had a history of moderate to severe increased fragility of long bones and vertebral bodies. Four patients had experienced at least one episode of hyperplastic callus formation. The family history was positive for OI in 3 patients, with an autosomal dominant pattern of inheritance. All type V patients had limitations in the range of pronation/supination in one or both forearms, associated with a radiologically apparent calcification of the interosseous membrane. Three patients had anterior dislocation of the radial head. A radiodense metaphyseal band immediately adjacent to the growth plate was a constant feature in growing patients. Lumbar spine bone mineral density was low and similar to age-matched patients with OI type IV. None of the type V patients presented blue sclerae or dentinogenesis imperfecta, but ligamentous laxity was similar to that in patients with OI type IV. Levels of biochemical markers of bone metabolism generally were within the reference range, but serum alkaline phosphatase and urinary collagen type I N-telopeptide excretion increased markedly during periods of active hyperplastic callus formation. Qualitative histology of iliac biopsy specimens showed that lamellae were arranged in an irregular fashion or had a meshlike appearance. Quantitative histomorphometry revealed decreased amounts of cortical and cancellous bone, like in OI type IV. However, in contrast to OI type IV, parameters that reflect remodeling activation on cancellous bone were mostly normal in OI type V, while parameters reflecting bone formation processes in individual remodeling sites were clearly decreased. Mutation screening of the coding regions and exon/intron boundaries of both collagen type I genes did not reveal any mutations affecting glycine codons or splice sites. In conclusion, OI type V is a new form of autosomal dominant OI, which does not appear to be associated with collagen type I mutations. The genetic defect underlying this disease remains to be elucidated. [source]


    Mutation screening of entire keratin 5 and keratin 14 genes and identification of a novel mutation in a Chinese family with epidermolysis bullosa simplex Dowling-Meara

    JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 12 2008
    H Yuan
    [source]


    Genetic variation of the human glycine receptor subunit genes GLRA3 and GLRB and susceptibility to idiopathic generalized epilepsies

    AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 6 2001
    Diana Sobetzko
    Abstract Alterations of glycine receptor ,1 and , subunit genes have been associated with hypertonic motor disorders in both mice and humans. Mutations in genes encoding other ligand- and voltage-gated ion channels have been identified in rare monogenic forms of idiopathic generalized epilepsies (IGE). We tested the hypothesis that allelic variants of the glycine receptor subunit genes, GLRA3 and GLRB, both localized on chromosome 4q, confer susceptibility to common subtypes of IGE. Mutation screening was carried out in index patients of 14 IGE families. No pathogenic mutation was found, but two intronic polymorphisms were detected in the GLRB gene, and four intronic, three exonic, and one 3,-UTR polymorphisms were identified for the GLRA3 gene. Subsequent screening for exonic and 3,-UTR polymorphisms in GLRA3 showed no statistical difference between a group of sporadic IGE patients (n,=,104) and a control group (n,=,141). The genotype frequencies for exonic and 3,-UTR polymorphisms in GLRA3 showed no statistically significant difference between IGE patients (n,=,104) and an ethnically matched control group (n,=,141). Thus, no association between IGE and alterations in GLRA3 or GLRB genes could be detected, indicating that both genes do not play a major causative role in the epileptogenesis of common IGE subtypes. Still, these novel single nucleotide polymorphisms may be useful markers for candidate gene analyses of other disorders. © 2001 Wiley-Liss, Inc. [source]


    Mutation screening of the androgen receptor promoter and untranslated regions in prostate cancer

    THE PROSTATE, Issue 15 2006
    Kati K. Waltering
    Abstract Background Mechanisms, other than gene amplification, leading to overexpression of AR in androgen ablation-resistant prostate cancer remain unknown and could include genetic alterations in the promoter or untranslated regions (UTR) of the AR gene. Materials and Methods DNAs from five prostate cancer cell lines, 19 LuCaP xenografts, 44 clinical tumors, and 36 non-malignant controls were used for screening mutations in the upstream regulatory region, promoter and the 5,- and 3,-UTRs of the AR gene with denaturating high performance liquid chromatography (DHPLC) and sequencing. Results Ten different sequence variations were found in prostate cancer cell lines and xenografts. However, none of them were recurrent or were found in clinical prostate cancer specimens or in normal controls. Conclusions Recurrent mutations in the promoter or UTRs of AR seem to be rare, and thus not likely mechanisms for the increased expression of the gene in the androgen ablation-resistant prostate cancer. Prostate 66: 1585,1591, 2006. © 2006 Wiley-Liss, Inc. [source]


    New Mutations of EXT1 and EXT2 Genes in German Patients with Multiple Osteochondromas

    ANNALS OF HUMAN GENETICS, Issue 3 2009
    Wolfram Heinritz
    Summary Mutations in either the EXT1 or EXT2 genes lead to Multiple Osteochondromas (MO), an autosomal dominantly inherited disorder. This is a report on clinical findings and results of molecular analyses of both genes in 23 German patients affected by MO. Mutation screening was performed by using denaturing high performance liquid chromatography (dHPLC) and automated sequencing. In 17 of 23 patients novel pathogenic mutations have been identified; eleven in the EXT1 and six in the EXT2 gene. Five patients were carriers of recurrent mutations in the EXT2 gene (p.Asp227Asn, p.Gln172X, p.Gln258X) and one patient had no detectable mutation. To demonstrate their pathogenic effect on transcription, two complex mutations in EXT1 and EXT2 and three splice site mutations were characterized by mRNA investigations. The results obtained provide evidence for different aberrant splice effects , usage of new cryptic splice sites and exon skipping. Our study extends the mutational spectrum and understanding of pathogenic effects of mutations in EXT1 and EXT2. [source]


    Mutation screening of the macrophage migration inhibitory factor gene: Positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritis

    ARTHRITIS & RHEUMATISM, Issue 9 2002
    Rachelle Donn
    Objective To determine if polymorphisms of the macrophage migration inhibitory factor (MIF) gene are associated with juvenile idiopathic arthritis (JIA). Methods Denaturing high-performance liquid chromatography was used to screen the MIF gene in 32 UK Caucasian controls and 88 UK Caucasian JIA patients. Ninety-two healthy UK Caucasian controls were then genotyped for each of the polymorphic positions identified. A panel of 526 UK Caucasian JIA patients and 259 UK Caucasian controls were subsequently genotyped for a single-nucleotide polymorphism (SNP) identified in the 5,-flanking region of the gene, using SNaPshot ddNTP primer extension and capillary electrophoresis. The functional significance of this polymorphism was also studied using luciferase-based reporter gene assays in human T lymphoblast and epithelial cell lines. Results A tetranucleotide repeat CATT(5,7) beginning at nucleotide position ,794 and 3 SNPs at positions ,173 (G to C), +254 (T to C), and +656 (C to G) of the MIF gene were identified. No JIA-specific mutations were found. Allele and genotype frequencies differed significantly between the controls and the JIA patients for the MIF-173 polymorphism. Individuals possessing a MIF-173*C allele had an increased risk of JIA (34.8% versus 21.6%) (odds ratio 1.9, 95% confidence interval 1.4,2.7; P = 0.0002). Furthermore, the MIF-173* G and C variants resulted in altered expression of MIF in a cell type,specific manner. Serum levels of MIF were also significantly higher in individuals who carried a MIF-173*C allele (P = 0.04). Conclusion The ,173-MIF*C allele confers increased risk of susceptibility to JIA. Our data suggest a cell type,specific regulation of MIF, which may be central to understanding its role in inflammation. [source]


    A nonsense mutation in exon 8 of the APC gene (Arg283Ter) causes clinically variable FAP in a Malaysian Chinese family

    CANCER SCIENCE, Issue 8 2003
    Zulqarnain Mohamed
    The present study was carried out to characterize the causative genetic mutation in a medium-sized Malaysian Chinese pedigree of three generations affected with familial adenomatous polyposis (FAP). Clinical data and genetic studies revealed considerable phenotypic variability in affected individuals in this family. Blood was obtained from members of the FAP-01 family and genomic DNA was extracted. Mutation screening of the adenomatous polyposis coli (APC) gene was carried out using the single strand conformation polymorphism (SSCP) technique. The possibility of exon skipping was predicted by splicing motif recognition software (ESEfinder release2.0). SSCP results showed mobility shifts in exon 8 of the APC gene which segregated with affected members of the family. Sequence analysis revealed that the affected individuals are heterozygous for a C847T transition, whilst all the unaffected family members and control individuals are homozygous C at the same position. This nucleotide substitution generates a stop codon at amino acid position 283, in place of the usual arginine (Arg283Ter). We conclude that an Arg283Ter mutation in the APC gene is causative of the FAP phenotype in this family, although there is considerable variation in the presentation of this disease among affected individuals. Computational analysis predicts that this mutation occurs within sequences that may function as splicing signals, so that the sequence change may affect normal splicing. [source]


    Mutation screening of interferon regulatory factor 1 gene (IRF-1) as a candidate gene for atopy/asthma

    CLINICAL & EXPERIMENTAL ALLERGY, Issue 11 2000
    E. Noguchi
    Background IL-4 gene cluster on chromosome 5 contains several candidate genes for atopy and asthma. Several independent studies have shown evidence for linkage between the markers flanking IL-4 gene cluster and asthma and/or asthma-related traits. Interferon regulatory factor 1 (IRF-1) is located approximately 300 kb telomeric to IL-4 and recent study reveals that IRF-1 deficiency results in an elevated production of Th2-related cytokines and a compensatory decrease in the expression of native cell- and Th1-related cytokines. Objective To determine if there are any mutations associated with the development of atopy and asthma present in the coding exons and 5, flanking region of the IRF-1 gene. Methods and results We have screened the promoter and coding regions of the IRF-1 gene in atopic asthmatics and controls by SSCP method. We found three novel nuclear variants (the ,300G/T and 4396 A/G polymorphisms and the 6355G > A rare variant) in the IRF-1 gene. No variants causing amino acid alterations of IRF-1 were detected. The ,300G/T polymorphism was in nearly complete linkage disequilibrium with the 4396 A/G polymorphism. An association between the 4396 A > G polymorphism and atopy/asthma was examined by transmission disequilibrium test in 81 asthmatic families. Either of 4396 A or 4396G alleles was not significantly preferentially transmitted to atopy- or asthma-affected children. Conclusion The IRF-1 gene is less likely to play a substantial role in the development of atopy and asthma in the Japanese population. [source]


    Multiplex ARMS analysis to detect 13 common mutations in familial hypercholesterolaemia

    CLINICAL GENETICS, Issue 6 2007
    A Taylor
    DNA analysis and mutation identification is useful for the diagnosis of familial hypercholesterolaemia (FH), particularly in the young and in other situations where clinical diagnosis may be difficult, and enables unambiguous identification of at-risk relatives. Mutation screening of the whole of the three FH-causing genes is costly and time consuming. We have tested the specificity and sensitivity of a recently developed multiplex amplification refractory mutation system assay of 11 low-density lipoprotein receptor gene (LDLR) mutations, one APOB (p.R3527Q) and one PCSK9 (p.D374Y) mutation in 400 patients attending 10 UK lipid clinics. The kit detected a mutation in 54 (14%) patients, and a complete screen of the LDLR gene using single-stranded conformation polymorphism/denaturing high performance liquid chromatography identified 59 different mutations (11 novel) in an additional 87 patients, for an overall detection rate of 35%. The kit correctly identified 38% of all detected mutations by the full screen, with no false-positive or false-negative results. In the patients with a clinical diagnosis of definite FH, the overall detection rate was higher (54/110 = 49%), with the kit detecting 52% of the full-screen mutations. Results can be obtained within a week of sample receipt, and the high detection rate and good specificity make this a useful initial DNA diagnostic test for UK patients. [source]


    MLPA assay in F8 gene mutation screening

    HAEMOPHILIA, Issue 3 2008
    M. ACQUILA
    No abstract is available for this article. [source]


    Mucopolysaccharidosis type IIID: 12 new patients and 15 novel mutations,

    HUMAN MUTATION, Issue 5 2010
    Marlies J. Valstar
    Abstract Mucopolysaccharidosis III D (Sanfilippo disease type D, MPS IIID) is a rare autosomal recessive lysosomal storage disorder previously described in only 20 patients. MPS IIID is caused by a deficiency of N-acetylglucosamine-6-sulphate sulphatase (GNS), one of the enzymes required for the degradation of heparan sulphate. So far only seven mutations in the GNS gene have been reported. The clinical phenotype of 12 new MPS IIID patients from 10 families was studied. Mutation analysis of GNS was performed in 16 patients (14 index cases). Clinical signs and symptoms of the MPS IIID patients appeared to be similar to previously described patients with MPS III. Early development was normal with onset of behavioral problems around the age of 4 years, followed by developmental stagnation, deterioration of verbal communication and subsequent deterioration of motor functions. Sequence analysis of the coding regions of the gene encoding GNS (GNS) resulted in the identification of 15 novel mutations: 3 missense mutations, 1 nonsense mutation, 4 splice site mutations, 3 frame shift mutations, 3 large deletions and 1 in-frame small deletion. They include the first missense mutations and a relatively high proportion of large rearrangements, which warrants the inclusion of quantitative techniques in routine mutation screening of the GNS gene. © 2010 Wiley-Liss, Inc. [source]


    Description and validation of high-throughput simultaneous genotyping and mutation scanning by high-resolution melting curve analysis,

    HUMAN MUTATION, Issue 6 2009
    Tú Nguyen-Dumont
    Abstract Mutation scanning using high-resolution melting curve analysis (HR-melt) is an effective and sensitive method to detect sequence variations. However, the presence of a common SNP within a mutation scanning amplicon may considerably complicate the interpretation of results and increase the number of samples flagged for sequencing by interfering with the clustering of samples according to melting profiles. A protocol describing simultaneous high-resolution gene scanning and genotyping has been reported. Here, we show that it can improve the sensitivity and the efficiency of large-scale case,control mutation screening. Two exons of ATM, both containing an SNP interfering with standard mutation scanning, were selected for screening of 1,356 subjects from an international breast cancer genetics study. Asymmetric PCR was performed in the presence of an SNP-specific unlabeled probe. Stratification of the samples according to their probe-target melting was aided by customized HR-melt software. This approach improved identification of rare known and unknown variants, while dramatically reducing the sequencing effort. It even allowed genotyping of tandem SNPs using a single probe. Hence, HR-melt is a rapid, efficient, and cost-effective tool that can be used for high-throughput mutation screening for research, as well as for molecular diagnostic and clinical purposes.Hum Mutat 30:1,7, 2009. © 2009 Wiley-Liss, Inc. [source]


    Mutation analysis in nephronophthisis using a combined approach of homozygosity mapping, CEL I endonuclease cleavage, and direct sequencing,

    HUMAN MUTATION, Issue 3 2008
    Edgar A. Otto
    Abstract Nephronophthisis (NPHP), an autosomal recessive kidney disease, is the most frequent genetic cause of chronic renal failure in the first three decades of life. Mutations in eight genes (NPHP1,8) have been identified. We here describe a combined approach for mutation screening of NPHP1, NPHP2, NPHP3, NPHP4, and NPHP5 in a worldwide cohort of 470 unrelated patients with NPHP. First, homozygous NPHP1 deletions were detected in 97 patients (21%) by multiplex PCR. Second, 25 patients with infantile NPHP were screened for mutations in inversin (NPHP2/INVS). We detected a novel compound heterozygous frameshift mutation (p.[Q485fs]+[R687fs]), and a homozygous nonsense mutation (p.R899X). Third, 37 patients presenting with NPHP and retinitis pigmentosa (Senior-Løken syndrome [SLS]) were screened for NPHP5/IQCB1 mutations by direct sequencing. We discovered five different (three novel) homozygous premature termination codon (PTC) mutations (p.F142fsX; p.R461X; p.R489X; p.W444X; and c.488,1G>A). The remaining 366 patients were further investigated for mutations in NPHP1, NPHP3, and NPHP4. We applied a "homozygosity only" strategy and typed three highly polymorphic microsatellite markers at the respective loci. A total of 32, eight, and 14 patients showed homozygosity, and were screened by heteroduplex crude celery extract (CEL I) endonuclease digests. The sensitivity of CEL I was established as 92%, as it detected 73 out of 79 different known mutations simply on agarose gels. A total of 10 novel PTC mutations were found in NPHP1 (p.P186fs, p.R347X, p.V492fs, p.Y509X, and c.1884+1G>A), in NPHP3 (c.3812+2T>C and p.R1259X), and in NPHP4 (p.R59X, p.T1004fs, and p.V1091fs). The combined homozygosity mapping and CEL I endonuclease mutation analysis approach allowed us to identify rare mutations in a large cohort of patients at low cost. Hum Mutat 29(3), 418,426, 2008. © 2007 Wiley-Liss, Inc. [source]


    Prioritizing regions of candidate genes for efficient mutation screening,

    HUMAN MUTATION, Issue 2 2006
    Terry A. Braun
    Abstract The availability of the complete sequence of the human genome has dramatically facilitated the search for disease-causing sequence variations. In fact, the rate-limiting step has shifted from the discovery and characterization of candidate genes to the actual screening of human populations and the subsequent interpretation of observed variations. In this study we tested the hypothesis that some segments of candidate genes are more likely than others to contain disease-causing variations and that these segments can be predicted bioinformatically. A bioinformatic technique, prioritization of annotated regions (PAR), was developed to predict the likelihood that a specific coding region of a gene will harbor a disease-causing mutation based on conserved protein functional domains and protein secondary structures. This method was evaluated by using it to analyze 710 genes that collectively harbor 4,498 previously identified mutations. Nearly 50% of the genes were recognized as disease-associated after screening only 9% of the complete coding sequence. The PAR technique identified 90% of the genes as containing at least one mutation, with less than 40% of the screening resources that traditional approaches would require. These results suggest that prioritization strategies such as PAR can accelerate disease-gene identification through more efficient use of screening resources. Hum Mutat 27(2), 195,200, 2006. © 2006 Wiley-Liss, Inc. [source]


    Novel mutations in the MYOC/GLC1A gene in a large group of glaucoma patients,,

    HUMAN MUTATION, Issue 6 2002
    Karin Michels-Rautenstrauss
    Abstract Mutations at the myocilin (MYOC) gene within the GLC1A locus have been revealed in 2-4% of patients suffering primary open angle glaucoma (POAG) worldwide. In our ongoing glaucoma study sixhundred eighty two persons have been screend for MYOC mutations. The first group consisted of 453 patients from a long-term clinical study diagnosed either with juvenile OAG (JOAG), POAG, ocular hypertension (OHT) or normal tension glaucoma (NTG) plus 22 cases of secondary glaucoma. This group, and additional 83 healthy controls, is part of a long term study with repeated clinical examinations at the University of Erlangen-Nurnberg. An additional sample of 124 glaucoma patients or at risk persons referred from other sources were included in the mutation screening. Five novel mutations, namely Gly434Ser, Asn450Asp, Val251Ala, Ile345Met and Ser393Asn, could be identified as cause of preperimetric POAG, JOAG, normal tension POAG and POAG. Myocilin mutations were identified similar with previous reports with other ethnic populations at the rate of 11/341 (3.2%) probands. © 2002 Wiley-Liss, Inc. [source]


    Automated mutation screening using dideoxy fingerprinting and capillary array electrophoresis

    HUMAN MUTATION, Issue 5 2001
    Lars Allan Larsen
    Abstract The rapid progress in the isolation of genes associated with human disease has resulted in an increasing demand for mutation screening methods. The molecular diagnosis of the long QT syndrome (LQTS), a cardiac disorder characterized by prolongation of the QTc interval in the ECG, syncopes, and sudden death, requires mutation screening of all exons in at least five genes, encoding cardiac Na+ and K+ channel subunits. A method for automated dideoxy fingerprinting (ddF) using capillary array electrophoresis (CAE) was developed and the efficiency of the method was tested by analyzing 24 DNA samples with mutations in one of the genes KCNQ1 and KCNH2, which are involved in 50% of LQTS cases. One of these mutations, 362insQK in KCNQ1, is novel. The sensitivity was 100% using a single electrophoresis temperature of 18°C or 25°C. However, analysis of the samples in both the sense and anti-sense direction were required for high sensitivity. Analysis in a single direction resulted in a decrease of the sensitivity to 74% and 70%, respectively. The throughput of the ddF method, if performed with a 16 capillary CAE instrument, is 288 samples per seven hr if each sample is analyzed on both strands. Hum Mutat 18:451,457, 2001. © 2001 Wiley-Liss, Inc. [source]


    Prevalence of BRCA1 and BRCA2 mutations in Pakistani breast and ovarian cancer patients

    INTERNATIONAL JOURNAL OF CANCER, Issue 12 2006
    Muhammad U. Rashid
    Abstract Among Asian countries, Pakistan has the highest rates of breast and ovarian cancer. To assess the contribution of the BRCA1 and BRCA2 germ line mutations to these high rates, we conducted the first study of 176 Pakistani breast and ovarian cancer patients, selected on family history and on age of diagnosis. Comprehensive BRCA mutation screening was performed using a range of techniques, including denaturing high-pressure liquid chromatography, single strand conformational polymorphism analysis and protein truncation test, followed by DNA sequencing. Thirty deleterious germ-line mutations were identified in the 176 families (17.0%), including 23 in BRCA1 and 7 in BRCA2. Four mutations, 185delAG, 185insA, S1503X and R1835X, were recurrent; these accounted for 52% of all identified BRCA1 mutations. Haplotype analyses suggested founder effects for 3 of these. The prevalence of BRCA1 or BRCA2 mutations was 42.8% for families with multiple cases of breast cancer, and was 50.0% for the breast/ovarian cancer families. The prevalence of mutations was 11.9% for single cases of early-onset breast cancer (,30 years) and was 9.0% for single cases of early-onset ovarian cancer (,45 years). Our findings show that BRCA mutations account for a substantial proportion of hereditary breast/ovarian cancer and early-onset breast and ovarian cancer cases in Pakistan. © 2006 Wiley-Liss, Inc. [source]


    Analysis of fumarate hydratase mutations in a population-based series of early onset uterine leiomyosarcoma patients

    INTERNATIONAL JOURNAL OF CANCER, Issue 2 2006
    Sanna K. Ylisaukko-oja
    Abstract Germline mutations in fumarate hydratase (FH) gene at 1q43 predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome. In HLRCC, the most common clinical features are leiomyomas of the skin and uterus, and in a subset of the families, renal cell cancer (RCC) and uterine leiomyosarcoma (ULMS) occur frequently at young age. This study was conducted to evaluate the possible contribution of FH mutations in a population-based series of early onset (,45 years) ULMSs. Eighty-one cases were identified through the national cancer registry, and samples from 67 cases (83%) were available for FH mutation screening and analysis of allelic imbalance (AI) at the FH locus. Seventeen percent of tumors showed AI. In the mutation analysis, a novel missense mutation K424R was found. The mutation was also found from the patient's normal tissue. To study whether this variant has functional consequences, FH enzyme activity assay was performed in a cell model. The activity of the mutated protein was significantly reduced as compared to wild type (p = 0.009). This study shows that FH germline mutations can occur in seemingly nonsyndromic cases of ULMS (1/67, 1.5%). It appears that on the population level hereditary FH defects do play a role in pathogenesis of sporadic early onset ULMSs, albeit rarely. © 2006 Wiley-Liss, Inc. [source]


    X-linked mental retardation and epigenetics

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 4 2006
    Guy Froyen
    Abstract The search for the genetic defects in constitutional diseases has so far been restricted to direct methods for the identification of genetic mutations in the patients' genome. Traditional methods such as karyotyping, FISH, mutation screening, positional cloning and CGH, have been complemented with newer methods including array-CGH and PCR-based approaches (MLPA, qPCR). These methods have revealed a high number of genetic or genomic aberrations that result in an altered expression or reduced functional activity of key proteins. For a significant percentage of patients with congenital disease however, the underlying cause has not been resolved strongly suggesting that yet other mechanisms could play important roles in their etiology. Alterations of the ,native' epigenetic imprint might constitute such a novel mechanism. Epigenetics, heritable changes that do not rely on the nucleotide sequence, has already been shown to play a determining role in embryonic development, X-inactivation, and cell differentiation in mammals. Recent progress in the development of techniques to study these processes on full genome scale has stimulated researchers to investigate the role of epigenetic modifications in cancer as well as in constitutional diseases. We will focus on mental impairment because of the growing evidence for the contribution of epigenetics in memory formation and cognition. Disturbance of the epigenetic profile due to direct alterations at genomic regions, or failure of the epigenetic machinery due to genetic mutations in one of its components, has been demonstrated in cognitive derangements in a number of neurological disorders now. It is therefore tempting to speculate that the cognitive deficit in a significant percentage of patients with unexplained mental retardation results from epigenetic modifications. [source]


    Clinical history and new prognostic indicators in metachromatic leukodystrophy

    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 2 2004
    U Del Carro
    Objective: To study clinical phenotypes and to increase knowledge of natural history of different variants of metachromatic leukodystrophy (MLD). Background: Little is known about factors influencing age of onset, progression rate and peripheral nerve involvement in MLD due to its rarity, heterogeneity and paucity of serial clinical and instrumental reports. Methods: 15 biochemically and molecularly characterized MLD patients were evaluated along a two-year follow-up period with clinical, electroneurographic (ENG) and brain MRI recordings. Results: Late infantile patients had a progressive and rapid course, whereas juvenile form showed marked variability. Different clinical presentations were associated with similar levels of ARSA activity; mutation screening indicated a high prevalence of rare or private mutations. In all late infantile and in the adult patient, ENG revealed a severe polyneuropathy. In juvenile patients a milder polyneuropathy or even normal tests were found. The earliest MRI change was periventricular white matter signal alterations, with initial involvement of posterior regions in a majority of late infantile patients, while in juvenile forms white matter lesions were mainly anterior. Conclusions: MLD course is highly variable and only partially influenced by age of onset, especially among juvenile patients. No clear-cut correlations exist between clinical phenotype and biochemical or molecular characterization. The presence of peripheral neuropathy at onset seems a strong indicator of a poorer clinical outcome. [source]


    Mutation screening in the ryanodine receptor 1 gene (RYR1) in patients susceptible to malignant hyperthermia who show definite IVCT results: identification of three novel mutations

    ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 6 2002
    H. Rueffert
    Background: The ryanodine receptor of the skeletal muscle (RYR1) seems to be of outstanding importance in the pathogenesis of malignant hyperthermia (MH). It has been shown that point mutations in the RYR1 gene are strongly associated with the MH phenotype. A correctly determined phenotype is the basic prerequisite for adequate genetic MH screening. In this study we examined only those MH susceptible patients for the presence of potential RYR1 mutations who showed strong pathological muscle responses in the in vitro contracture test (IVCT). Methods: A total of 56 MHS index patients who complied with the following IVCT criteria were included in the molecular genetic investigation: Contracture forces ,4 mN at a caffeine concentration of 2.0 mmol/l and ,8 mN at a halothane concentration of 0.44 mmol/l. DNA sequences of exons 2, 6, 9, 11, 12, 14, 15, 17, 39, 40, 45, 46, 102 of the RYR1 gene were analysed by the direct sequencing technique. Furthermore, if an MH mutation was identified in an index patient, all relatives were screened for their family specific RYR1 defect. Results: In 39 index patients an RYR1 mutation was detected: Arg163Cys (n = 2), Asp166Asn (n = 1), Gly341Arg (n = 2), Arg401His (n = 2), Arg614Cys (n = 12), Asp2129Glu (n = 1),Vol2168Met (n = 1), Thr2206Met (n = 9), Ala2428Thr (n = 1), Gly2434Arg (n = 2), Arg2435His (n = 1), Arg2452Trp (n = 1), Arg2454His (n = 4). Three new RYR1 mutations were identified. We found a potential MH mutation in a further 130 relatives of the 39 index patients. Thirty-seven individuals were classified as MHS exclusively by molecular genetic techniques and did not have to undergo the IVCT. Conclusions: The ascertained high rate of successful MH mutation screening (69.64%) is obviously associated with the more clearly defined MHS diagnosis in the IVCT. According to the EMHG guidelines for the molecular genetic detection of MH susceptibility, a positive MH disposition could be determined in numerous persons by a less invasive technique. [source]


    Should children at risk for familial adenomatous polyposis be screened for hepatoblastoma and children with apparently sporadic hepatoblastoma be screened for APC germline mutations?,

    PEDIATRIC BLOOD & CANCER, Issue 6 2006
    Stefan Aretz MD
    Abstract Background Hepatoblastoma (HB) is the most frequent liver tumor in childhood, occurring in the first few years of life. Surgery combined with chemotherapy has resulted in dramatic improvements in prognosis. However, even today, about one quarter of affected children do not survive the disease. Compared to the general population, the risk of HB is 750,7,500 times higher in children predisposed to familial adenomatous polyposis (FAP), an autosomal-dominant cancer predispostion syndrome caused by germline mutations in the tumor suppressor gene APC. Only limited data exist about the frequency of APC germline mutations in cases of apparently sporadic HB without a family history of FAP. Procedure In our sample of 1,166 German FAP families, all known cases of HB were registered. In addition, 50 patients with apparently sporadic HB were examined for APC germline mutations. Results In the FAP families, seven unrelated cases of HB are documented; three had been detected at an advanced stage. In patients with apparently sporadic HB, germline mutations in the APC gene were identified in 10%. Conclusions These data raise the issue of the appropriate screening for HB in children of FAP patients. To date, the efficiency of surveillance for HB is unclear. In Beckwith,Wiedemann syndrome (BWS), recent studies suggest an earlier detection of both Wilms tumor and HB by frequent screening. We discuss the rationale and implications of a screening program; besides the examination procedure itself, screening for HB in children of FAP patients would have important consequences for the policy of predictive testing in FAP. In a substantial fraction of sporadic HB, the disease is obviously the first manifestation of a de novo FAP. These patients should be identified by routine APC mutation screening and undergo colorectal surveillance thereafter. Pediatric Blood Cancer 2006;47:811,818. © 2005 Wiley-Liss, Inc. [source]


    Large Genomic Mutations within the ATM Gene Detected by MLPA, Including a Duplication of 41 kb from Exon 4 to 20

    ANNALS OF HUMAN GENETICS, Issue 1 2008
    Simona Cavalieri
    Summary Mutation detection remains problematic for large genes, primarily because PCR-based methodology fails to detect heterozygous deletions and any duplication. In the ATM gene only a handful of multi-exon deletions have been described to date, and this type of mutation has been considered rare. To address this issue we tested a new MLPA (Multiplex Ligation Probe Amplification) kit that covers 33 of the 66 ATM exons, using for controls two previously characterized genomic deletions in addition to three A-T patients, taken from a survey of nine, who had missing four mutations unidentified after conventional mutation screening. We identified for the first time: 1) a ,41 kb genomic duplication spanning exons 4,20 (c.-30_2816dup41kb)(a.k.a., ATM dup 41 kb); 2) a novel genomic deletion including exon 31, and 3) in hemizygosis a point mutation in the non-deleted exon 31. In this study we extended mutation detection to nine new Italian A-T patients, using a combined approach of haplotype analysis, DHPLC and MLPA. Overall we achieved a mutation detection rate of >97%, and can now define a spectrum of ATM mutations based on twenty-one consecutive Italian families with A-T. [source]