Muscle-derived Stem Cells (muscle-derived + stem_cell)

Distribution by Scientific Domains


Selected Abstracts


The influence of sex on the chondrogenic potential of muscle-derived stem cells: Implications for cartilage regeneration and repair

ARTHRITIS & RHEUMATISM, Issue 12 2008
Tomoyuki Matsumoto
Objective To explore possible differences in muscle-derived stem cell (MDSC) chondrogenic differentiation in vitro and articular cartilage regeneration in vivo between murine male MDSCs (M-MDSCs) and female MDSCs (F-MDSCs). Methods Three different populations of M- and F-MDSCs (n = 3 of each sex) obtained via preplate technique, which separates cells based on their variable adhesion characteristics, were compared for their in vitro chondrogenic potential using pellet culture. Cells were assayed with and without retroviral transduction to express bone morphogenetic protein 4 (BMP-4). The influence of both expression of stem cell marker Sca1 and in vitro expansion on the chondrogenic potential of M- and F-MDSCs was also determined. Additionally, BMP-4,transduced M- and F-MDSCs were applied to a full-thickness articular cartilage defect (n = 5 each) on the femur of a nude rat, and the quality of the repaired tissue was evaluated by macroscopic and histologic examination. Results With and without BMP-4 gene transduction, M-MDSCs produced significantly larger pellets with a richer extracellular matrix, compared with F-MDSCs. Sca1 purification influenced the chondrogenic potential of MDSCs, especially M-MDSCs. Long-term culture did not affect the chondrogenic potential of M-MDSCs but did influence F-MDSCs. M-MDSCs repaired articular cartilage defects more effectively than did F-MDSCs at all time points tested, as assessed both macroscopically and histologically. Conclusion Our findings demonstrate that sex influences the chondrogenic differentiation and articular cartilage regeneration potential of MDSCs. Compared with female MDSCs, male MDSCs display more chondrogenic differentiation and better cartilage regeneration potential. [source]


Muscle-derived Stem Cell Therapy for Stress Urinary Incontinence

LUTS, Issue 2009
Shing-Hwa LU
The aim of the present article is to overview the potential of muscle-derived stem cells and other cellular therapy for urethral regeneration and to review the clinical experiences of its application in patients with stress urinary incontinence. [source]


Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble flt-1

ARTHRITIS & RHEUMATISM, Issue 5 2009
Tomoyuki Matsumoto
Objective The control of angiogenesis during chondrogenic differentiation is an important issue affecting the use of stem cells in cartilage repair, especially with regard to the persistence of regenerated cartilage. This study was undertaken to investigate the effect of vascular endothelial growth factor (VEGF) stimulation and the blocking of VEGF with its antagonist, soluble Flt-1 (sFlt-1), on the chondrogenesis of skeletal muscle-derived stem cells (MDSCs) in a rat model of osteoarthritis (OA). Methods We investigated the effect of VEGF on cartilage repair in an immunodeficiency rat model of OA after intraarticular injection of murine MDSCs expressing bone morphogenetic protein 4 (BMP-4) in combination with MDSCs expressing VEGF or sFlt-1. Results In vivo, a combination of sFlt-1, and BMP-4,transduced MDSCs demonstrated better repair without osteophyte formation macroscopically and histologically following OA induction, when compared with the other groups. Higher differentiation/proliferation and lower levels of chondrocyte apoptosis were also observed in sFlt-1, and BMP-4,transduced MDSCs compared with a combination of VEGF- and BMP-4,transduced MDSCs or with BMP-4,transduced MDSCs alone. In vitro experiments with mixed pellet coculture of MDSCs and OA chondrocytes revealed that BMP-4,transduced MDSCs produced the largest pellets, which had the highest gene expression of not only type II collagen and SOX9 but also type X collagen, suggesting formation of hypertrophic chondrocytes. Conclusion Our results demonstrate that MDSC-based therapy involving sFlt-1 and BMP-4 repairs articular cartilage in OA mainly by having a beneficial effect on chondrogenesis by the donor and host cells as well as by preventing angiogenesis, which eventually prevents cartilage resorption, resulting in persistent cartilage regeneration and repair. [source]


The influence of sex on the chondrogenic potential of muscle-derived stem cells: Implications for cartilage regeneration and repair

ARTHRITIS & RHEUMATISM, Issue 12 2008
Tomoyuki Matsumoto
Objective To explore possible differences in muscle-derived stem cell (MDSC) chondrogenic differentiation in vitro and articular cartilage regeneration in vivo between murine male MDSCs (M-MDSCs) and female MDSCs (F-MDSCs). Methods Three different populations of M- and F-MDSCs (n = 3 of each sex) obtained via preplate technique, which separates cells based on their variable adhesion characteristics, were compared for their in vitro chondrogenic potential using pellet culture. Cells were assayed with and without retroviral transduction to express bone morphogenetic protein 4 (BMP-4). The influence of both expression of stem cell marker Sca1 and in vitro expansion on the chondrogenic potential of M- and F-MDSCs was also determined. Additionally, BMP-4,transduced M- and F-MDSCs were applied to a full-thickness articular cartilage defect (n = 5 each) on the femur of a nude rat, and the quality of the repaired tissue was evaluated by macroscopic and histologic examination. Results With and without BMP-4 gene transduction, M-MDSCs produced significantly larger pellets with a richer extracellular matrix, compared with F-MDSCs. Sca1 purification influenced the chondrogenic potential of MDSCs, especially M-MDSCs. Long-term culture did not affect the chondrogenic potential of M-MDSCs but did influence F-MDSCs. M-MDSCs repaired articular cartilage defects more effectively than did F-MDSCs at all time points tested, as assessed both macroscopically and histologically. Conclusion Our findings demonstrate that sex influences the chondrogenic differentiation and articular cartilage regeneration potential of MDSCs. Compared with female MDSCs, male MDSCs display more chondrogenic differentiation and better cartilage regeneration potential. [source]


Induction of bone formation by transforming growth factor-,2 in the non-human primate Papio ursinus and its modulation by skeletal muscle responding stem cells

CELL PROLIFERATION, Issue 3 2010
U. Ripamonti
Objectives:, Four adult non-human primates Papio ursinus were used to study induction of bone formation by recombinant human transforming growth factor-,2 (hTGF-,2) together with muscle-derived stem cells. Materials and methods:, The hTGF-,2 was implanted in rectus abdominis muscles and in calvarial defects with and without addition of morcellized fragments of striated muscle, harvested from the rectus abdominis or temporalis muscles. Expression of osteogenic markers including osteogenic protein-1, bone morphogenetic protein-3 and type IV collagen mRNAs from generated specimens was examined by Northern blot analysis. Results:, Heterotopic intramuscular implantation of 5 and 25 ,g hTGF-,2 combined with 100 mg of insoluble collagenous bone matrix yielded large corticalized mineralized ossicles by day 30 with remodelling and induction of haematopoietic marrow by day 90. Addition of morcellized rectus abdominis muscle to calvarial implants enhanced induction of bone formation significantly by day 90. Conclusions:, In Papio ursinus, in marked contrast to rodents and lagomorphs, hTGF-,2 induced large corticalized and vascularized ossicles by day 30 after implantation into the rectus abdominis muscle. This striated muscle contains responding stem cells that enhance the bone induction cascade of hTGF-,2. Induction of bone formation by hTGF-,2 in the non-human primate Papio ursinus may occur as a result of expression of bone morphogenetic proteins on heterotopic implantation of hTGF-,2; the bone induction cascade initiated by mammalian TGF-, proteins in Papio ursinus needs to be re-evaluated for novel molecular therapeutics for induction of bone formation in clinical contexts. [source]