Home About us Contact | |||
Muscle Cells (muscle + cell)
Kinds of Muscle Cells Terms modified by Muscle Cells Selected AbstractsPARATHYROID HORMONE HAS A PROSCLEROTIC EFFECT ON VASCULAR SMOOTH MUSCLE CELLSNEPHROLOGY, Issue 1 2002Vlado Perkovic [source] PIOGLITAZONE INHIBITS HOMOCYSTEINE-INDUCED MIGRATION OF VASCULAR SMOOTH MUSCLE CELLS THROUGH A PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ,-INDEPENDENT MECHANISMCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 12 2008Li Li SUMMARY 1Peroxisome proliferator-activated receptor (PPAR)-, agonists have been demonstrated to exert protective effects against homocysteine (Hcy)-induced pathogenesis. However, the effects of PPAR-, agonists on Hcy-induced migration are unknown. In the present study, we examined the effect of pioglitazone on the migration of vascular smooth muscle cells (VSMC) induced by Hcy and the possible mechanism involved. 2Vascular smooth muscle cells were isolated from the thoracic aortas of male Sprague-Dawley rats. The migration of VSMC was examined using a transwell technique. The generation of intracellular reactive oxygen species (ROS) was measured using the ROS-sensitive fluoroprobe 2,,7,-dichlorodihydrofluorescein diacetate. The activity of NAD(P)H oxidase was assessed by lucigenin enhanced chemiluminescence. Activation of p38 mitogen-activated protein kinase (MAPK) was determined by western blotting. 3The results showed that pioglitazone dose-dependently inhibited the migration of VSMC induced by Hcy. This was not reversed by the PPAR-, antagonist GW9662. In addition, pretreatment with the NAD(P)H oxidase inhibitor diphenylene iodonium (DPI), the free radical scavenger N -acetylcysteine and the p38 MAPK inhibitor SB202190 blocked Hcy-induced VSMC migration. Furthermore, we observed that pioglitazone suppressed Hcy-induced intracellular ROS production; similar effects were observed with DPI and NAC. Pioglitazone attenuated Hcy-induced activation of NAD(P)H oxidase. Moreover, pioglitazone blocked Hcy-induced p38 MAPK phosphorylation; similar effects were observed for DPI, NAC and SB202190. 4The data demonstrate that pioglitazone inhibits Hcy-induced VSMC migration that is independent of PPAR-,. Furthermore, part of the biological effect of pioglitazone involves a decrease in the levels of NAD(P)H oxidase derived-ROS and p38 MAPK activation. [source] STIMULATION OF OESTROGEN RECEPTOR-EXPRESSING ENDOTHELIAL CELLS WITH OESTROGEN REDUCES PROLIFERATION OF COCULTURED VASCULAR SMOOTH MUSCLE CELLSCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 3 2008Malin Odenlund SUMMARY 1Oestrogen reduces vascular smooth muscle cell proliferation in mouse vascular injury models. Data on the antiproliferative effect of oestrogen in cultured vascular smooth muscle cells (VSMC) are less conclusive than those obtained in whole animal studies. 2In the present study, we investigated the hypothesis that oestrogen-induced attenuation of VSMC proliferation is facilitated by the presence of endothelial cells (EC) using a coculture system of EC and VSMC. 3Treatment with a physiological concentration of oestrogen (17,-estradiol (E2); 100 nmol/L) had no effect on fetal calf serum (FCS)-stimulated DNA synthesis in either A7r5 VSMC or bEnd.3 EC. However, stimulation of bEnd. 3 cells with E2 in a coculture system of bEnd.3 and A7r5 cells reduced FCS-induced DNA synthesis in A7r5 cells by approximately 45%. The nitric oxide synthase inhibitor NG -nitro- l- arginine methyl ester (l -NAME; 100 µmol/L) did not reverse the oestrogen-induced attenuation of DNA synthesis. The antiproliferative effect of E2 may be mediated via either oestrogen receptor (ER) ,, ER, or both because the bEnd.3 cells expressed immunoreactivity for both ER subtypes. 4These data show that ER,- and ER,-expressing endothelial cells, which are stimulated with a physiological concentration of oestrogen, release a factor(s) that arrests the proliferation of cocultured VSMC. Oestrogen-induced attenuation of vascular smooth muscle cell proliferation is not prevented by l -NAME, suggesting that a mechanism other than endothelial NO is involved. [source] EARLY ACTIVATION OF INTERNAL MEDIAL SMOOTH MUSCLE CELLS IN THE RABBIT AORTA AFTER MECHANICAL INJURY: RELATIONSHIP WITH INTIMAL THICKENING AND PHARMACOLOGICAL APPLICATIONSCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1-2 2006Huguette Louis SUMMARY 1Smooth muscle cells (SMC) participate in both inflammatory and dedifferentiation processes during atherosclerosis, as well as during mechanical injury following angioplasty. In the latter, we studied medial SMC differentiation and inflammation processes implicated early after de-endothelialization in relation to mechanical stresses. We hypothesized that activation of a subpopulation of SMC within the media plays a crucial role in the early phase of neointimal formation. 2For this purpose, we used a rabbit model of balloon injury to study activation and differentiation of medial SMC in the early time after denudation and just before neointima thickening. Inflammation was evaluated by the expression of vascular cell adhesion molecule (VCAM)-1, integrin a4b1 and nuclear factor (NF)-kB. Myosin isoforms and 2P1A2 antigen, a membrane protein expressed by rabbit dedifferentiated SMC, were used as markers of differentiation. 3On day 2 after de-endothelialization, VCAM-1, a4b1 and NF-kB were coexpressed by a well-defined subpopulation of SMC of the internal part of the media, in the vicinity of the blood stream. At the same time, the majority of SMC throughout the media expressed non-muscle myosin heavy chain-B (nm-MHC-B) and 2P1A2 antigen. On day 7, when intimal thickening appeared, SMC of the media were no longer activated, whereas some intimal SMC expressed the activation markers. Thus, after de-endothelialization, early dedifferentiation occurs in most of the medial SMC, whereas activation concerned only a subpopulation of SMC located in the internal media. Using the T-type voltage-operated calcium channel blocker mibefradil (0.1,1 mmol/L) in SMC culture, we showed that this agent exhibited an antiproliferative effect in a dose-dependant manner only on undifferentiated cells. 4In conclusion, the results suggest that the activated SMC represent cells that are potentially able to migrate and participate in the intimal thickening process. Thus, the medial SMC inflammatory process, without any contribution of inflammatory cells, may represent a major mechanism underlying the development of intimal thickening following mechanical stress. In humans, inhibition of T-type calcium channels may be a tool to prevent the early proliferation step leading to neointimal formation. [source] Aging Increases the Interleukin-1,,Induced INOS Gene Expression and Nitric Oxide (NO) Production in Vascular Smooth Muscle CellsJOURNAL OF CARDIAC SURGERY, Issue 6 2002Gabriel HH Chan Objectives: Inducible form of nitric oxide synthase (iNOS) is induced by cytokines (e.g. interleukin-1, (IL-1,)) during pathological conditions, such as sepsis. Excessive NO synthesis in blood vessels during sepsis can result in massive vasodilation and life-threatening hypotension. In addition, chronic expression of iNOS contributes to onset of diabetes, autoimmune diseases, arthritis, renal toxicity, and neurodegenerative disorders. The purpose of the present study was to examine the effect of aging on the levels of expression of iNOS induced by a low concentration (5 ng/ml) of IL-1, in VSMCs. Methods: Gene expression of iNOS was determined by RT-PCR and analysis of the PCR products by both agarose gel electrophoresis and capillary electrophoresis with laser-induced fluorescence detector (CE-LIF). This new CE-LIF technique, just developed in our laboratory, provides greater than 1,000 fold better sensitivity compared to agarose gels. The production of nitrite, the stable metabolite of NO, was measured (by a modified Griess reaction) in the media of cultured VSMCs isolated from young and elderly rats (3-month and 20-months old, respectively) of both genders following the exposure to IL-1, (5 ng/ml). VSMCs were used in their 1st passage to avoid phenotypic changes that typically occur in cultures of VSMCs after 3-10 passages. Results: IL-1, (5 ng/ml) caused a much larger increase in iNOS mRNA in VSMCs of elderly rats as compared to young rats. Furthermore, IL-1, (5 ng/ml) had no significant effect on nitrite levels in VSMCs of young, but significantly increased nitrite levels by 7.9 fold in VSMCs from elderly male rats and by 2.6 fold in VSMCs from elderly female rats, as compared to young rats. A report had previously shown that the neuropeptide CGRP could synergistically enhance the expression of iNOS caused by IL-1, in later passages (10-15 passages) of rat aortic VSMCs (i.e. phenotypically modulated VSMCs). We found that IL-1, and CGRP together did not act synergistically to increase production of nitrite in our phenotypically normal (1st passage) VSMCs. Conclusion: IL-1,, at a low concentration (5 ng/ml), preferentially induces iNOS expression and increases production of NO in VSMCs of elderly rats as compared to young rats. The data suggest that aging enhances the responsiveness of VSMCs to the iNOS-inducing actions of the cytokine IL-1,. This may be a contributing factor in the increased risk of developing severe hypotension in elderly patients with sepsis. (Supported by a Direct Grant for Research). [source] Behavior of Nonselective Cation Channels and Large-Conductance Ca2+ -Activated K+ Channels Induced by Dynamic Changes in Membrane Stretch in Cultured Smooth Muscle Cells of Human Coronary ArteryJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 1 2003PH.D., SHENG-NAN WU M.D. Stretch-Activated Ion Channels. Introduction: The effects of membrane stretch on ion channels were investigated in cultured smooth muscle cells of human coronary artery. Methods and Results: In the cell-attached configuration, membrane stretch with negative pressure induced two types of stretch-activated (SA) ion channels: a nonselective cation channel and a large-conductance Ca2+ -activated K+ (BKCa) channel. The single-channel conductances of SA cation and BKCa channels were 26 and 203 pS, respectively. To elucidate the mechanism of activation of these SA channels and to minimize mechanical disruption, a sinusoidal change in pipette pressure was applied to the on-cell membrane patch. During dynamic changes in pipette pressure, increases in SA cation channel activity was found to coincide with increases in BKCa channel activity. In the continued presence of cyclic stretch, the activity of SA cation channels gradually diminished. However, after termination of cyclic stretch, BKCa channel activity was greatly enhanced, but the activity of SA cation channels disappeared. Conclusion: This study is the first to demonstrate that the behavior of SA cation and BKCa channels in coronary smooth muscle cells is differentially susceptible to dynamic changes in membrane tension. [source] ATP-Sensitive K+ Channels of Vascular Smooth Muscle CellsJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 1 2003WILLIAM C. COLE Ph.D. ATP-sensitive potassium channels (KATP) of vascular smooth muscle cells represent potential therapeutic targets for control of abnormal vascular contractility. The biophysical properties, regulation and pharmacology of these channels have received intense scrutiny during the past twenty years, however, the molecular basis of vascular KATP channels remains ill-defined. This review summarizes the recent advancements made in our understanding of the molecular composition of vascular KATP channels with a focus on the evidence that hetero-octameric complexes of Kir6.1 and SUR2B subunits constitute the vascular KATP subtype responsible for control of arterial diameter by vasoactive agonists. [source] Cellular Physiology of Retinal and Choroidal Arteriolar Smooth Muscle CellsMICROCIRCULATION, Issue 1 2007C. N. SCHOLFIELD ABSTRACT Control of ocular blood flow occurs predominantly at the level of the retinal and choroidal arterioles. The present article provides an overview of the Ca2 + handling mechanisms and plasmalemmal ion channels involved in the regulation of retinal and choroidal arteriolar smooth muscle tone. Increases in global intracellular free Ca2 + ([Ca2 +]i) involve multiple mechanisms, including agonist-dependent release of Ca2 + from intracellular stores through activation of the inositol trisphosphate (IP3) pathway. Ca2 + enters by voltage-dependent L-type Ca2 + channels and novel dihydropyridine-sensitive store-operated nonselective cation channels. Ca2 + extrusion is mediated by plasmalemmal Ca2 + -ATPases and through Na+/Ca2+ exchange. Local Ca2 + transients (Ca2 + sparks) play an important excitatory role, acting as the building blocks for more global Ca2 + signals that can initiate vasoconstriction. K+ and Cl, channels may also affect cell function by modulating membrane potential. The precise contribution of each of these mechanisms to the regulation of retinal and choroidal perfusion in vivo warrants future investigation. [source] Prostaglandin F2, Stimulates Endothelial Nitric Oxide Synthase Depending on the Existence of Bovine Granulosa Cells: Analysis by Co-culture System of Endothelial Cells, Smooth Muscle Cells and Granulosa CellsREPRODUCTION IN DOMESTIC ANIMALS, Issue 5 2008K Shirasuna Contents Prostaglandin F2, (PGF2,) induces luteolysis in the mid but not in the early luteal phase; despite this, both the early and the mid corpus luteum (CL) have PGF2, receptor (FPr). We previously indicated that the luteal blood flow surrounding the CL drastically increases prior to a decrease of progesterone (P) in the cows, suggesting that an acute increase of luteal blood flow may be an early sign of luteolysis in response to PGF2, and that this may be induced by a vasorelaxant nitric oxide (NO). The aim of this study was to investigate the luteal stage-dependent and the site-restricted effect of PGF2, and NO on the mRNA expressions and P secretion. To mimic the local luteal region both of peripheral and central areas of the CL, we utilized co-cultures using bovine aorta endothelial cells (EC), smooth muscle cells (SMC) and luteinizing granulosa cells (GC) or fully-luteinized GC. PGF2, stimulated the expression of endothelial NO synthase (eNOS) mRNA at 0.5 h in mix-cultures of EC and SMC with fully-luteinized GC but not with luteinizing GC. The expression of eNOS mRNA in EC was increased by PGF2, at 1 h only when EC was cultured together with fully-luteinized GC but not with luteinizing GC. In all co-cultures, PGF2, did not affect the mRNA expression of FPr. Treatment of NO donor inhibited P secretion at 0.5 h. In conclusion, the present study suggests that the coexistence of the mature luteal cells (fully-luteinized GC) with EC/SMC may be crucial for acquiring functional NO synthesis induced by PGF2,. [source] Effect of Testosterone on Potassium Channel Opening in Human Corporal Smooth Muscle CellsTHE JOURNAL OF SEXUAL MEDICINE, Issue 4 2008Deok Hyun Han MD ABSTRACT Introduction., In humans, the role of testosterone in sexual functions, including sexual desire, nocturnal penile erections, and ejaculatory volume, has been relatively well established. However, the effects of testosterone on intrapenile structure in humans remains controversial. Aim., We assessed the direct effects of testosterone on potassium channels in human corporal smooth muscle cells, in an effort to understand the mechanisms inherent to the testosterone-induced relaxation of corporal smooth muscle cells at the cellular and molecular levels. Methods., We conducted electrophysiologic studies using cultured human corporal smooth muscle cells. We evaluated the effects of testosterone on potassium channels,BKCa and KATP channels,by determining the whole-cell currents and single-channel activities. For the electrophysiologic recordings, whole-cell and cell-attached configuration patch-clamp techniques were utilized. Main Outcome Measures., Changes in whole-cell currents and channel activities of BKCa and KATP channels by testosterone. Results., Testosterone (200 nM) significantly increased the single-channel activity of calcium-activated potassium (BKCa) channels and whole-cell K+ currents by 443.4 ± 83.4% (at +60 mV; N = 11, P < 0.05), and this effect was abolished by tetraethylammonium (TEA) (1 mM), a BKCa channel blocker. The whole-cell inward K+ currents of the KATP channels were also increased by 226.5 ± 49.3% (at ,100 mV; N = 7, P < 0.05). In the presence of a combination of vardenafil (10 nM) and testosterone (200 nM), the BKCa channel was activated to a significantly higher degree than was induced by testosterone alone. Conclusions., The results of patch-clamp studies provided direct molecular evidence that testosterone stimulates the activity of BKCa channels and KATP channels. An understanding of the signaling mechanisms that couple testosterone receptor activation to potassium channel stimulation will provide us with an insight into the cellular processes underlying the vasorelaxant effects of testosterone. Han DH, Chae MR, Jung JH, So I, Park JK, and Lee SW. Effect of testosterone on potassium channel opening in human corporal smooth muscle cells. J Sex Med 2008;5:822,832. [source] Behavior of Cardiomyocytes and Skeletal Muscle Cells on Different Extracellular Matrix Components,Relevance for Cardiac Tissue EngineeringARTIFICIAL ORGANS, Issue 1 2007Karin Macfelda Abstract:, Myocardial cell transplantation in patients with heart failure is emerging as a potential therapeutic option to augment the function of remaining myocytes. Nevertheless, further investigations on basic issues such as ideal cell type continue to be evaluated. Therefore, the aim of our studies was to compare the performance of skeletal muscle cells and cardiomyocytes with respect to their proliferation rate and viability on different extracellular matrix components (EMCs). Rat cardiomyocytes (RCM) and rat skeletal muscle cells (RSMC) were cultured on EMCs such as collagen type I, type IV, laminin, and fibronectin. The components were used as "single coating" as well as "double coating." Proliferation rates were determined by proliferation assays on days 1, 2, 4, and 8 after inoculation of the cells. The most essential result is that collagen type I enhances the proliferation rate of RSMC but decreases the proliferation of RCM significantly. This effect is independent of the second EMC used for the double-coating studies. Other EMCs also influence cellular behavior, whereas the sequence of the EMCs is essential. Results obtained in our studies reveal the significant different proliferation behavior of RCM and RSMC under identical conditions. As skeletal muscle cells are also used in heart tissue engineering models, these results are essential and should be investigated in further studies to prove the applicability of skeletal muscle cells for heart tissue engineering purposes. [source] (-)-Epigallocatechin Gallate Inhibits Endothelin-1-Induced C-Reactive Protein Production in Vascular Smooth Muscle CellsBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 2 2010Chen-Jing Wang Based on our previous study, the effect of EGCG on endothelin-1 (ET-1)-induced CRP production in rat vascular smooth muscle cells (VSMCs) and the possible mechanism were observed. The in vitro experiments showed that EGCG concentration-dependently inhibited ET-1-stimulated expression of CRP both in protein and mRNA levels in VSMCs as determined by the immunocytochemical staining, the enzyme-linked immunosorbent assay and the real-time quantitative polymerase chain reaction (RT-qPCR). The in vivo investigation with the double-labelled immunofluorescence staining and RT-qPCR displayed that EGCG also prevented ET-1-induced CRP expression in protein and mRNA levels in the aortic VSMCs of rats receiving the subchronic infusion of ET-1. In addition, EGCG suppressed reactive oxygen species (ROS) generation evoked by ET-1 in VSMCs as observed by the fluorescence probe. These demonstrate that EGCG may inhibit ET-1-stimulated generation of CRP in VSMCs so to relieve the inflammatory response and oxidative stress via blocking ROS signal, which provides new evidence for an anti-atherosclerotic effect of EGCG. [source] Atorvastatin Decreases C-Reactive Protein-Induced Inflammatory Response in Pulmonary Artery Smooth Muscle Cells by Inhibiting Nuclear Factor-,B PathwayCARDIOVASCULAR THERAPEUTICS, Issue 1 2010Jie Li C-reactive protein (CRP) is well-known inflammatory marker, and recognized as a risk predictor of pulmonary arterial diseases. Although statins have a beneficial effect in animal models and patients with pulmonary arterial hypertension (PAH), the underlying mechanisms of their actions have less been investigated. The aims of this study was to examined the effects of CRP on expressions of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1), and the possible mechanisms of atorvastatin on CRP-induced IL-6 and MCP-1 production in cultured human pulmonary artery smooth muscle cells (PASMCs). In a preliminary study, the human PASMCs were stimulated by a variety of concentrations of CRP (5,200 ,g/mL) at different time points (0, 3, 6, 9, 12, 18 and 24 h) for the purpose of determining the dose- and time-dependent effects of CRP on inflammatory response of the cells. Then, the cells were pre-incubated for 2 h with atorvastatin (0.1,10 ,mol/L) in the presence of CRP. The supernatant levels of both IL-6 and MCP-1 secretion were examined by ELISA. The cellular mRNA expressions of IL-6 and MCP-1 and nuclear factor-,B (NF-,B) activity were determined by real-time reverse transcription and polymerase chain reaction (RT-PCR) and electrophoretic mobility shift assay (EMSA), respectively. CRP resulted in elevated IL-6 and MCP-1 secretion and mRNA expression in a dose- and time-dependent manner. In addition, CRP also significantly activated the NF-,B pathway. Preincubation with 0.1,10 ,mol/L of atorvastatin significantly decreased the secretions of IL-6 and MCP-1 induced by CRP. Moreover, 10 ,mol/L of atorvastatin completely abrogated CRP-induced increase in IL-6 and MCP-1 by attenuating the activation of NF-,B. The present study demonstrated that inhibiting effect of atorvastatin on CRP-induced inflammatory response in cultured PASMCs was associated with NF-,B pathway. This pathway might represent a promising target for controlling CRP-induced inflammatory response in pulmonary arterial diseases. [source] Altered Mitogen-Activated Protein Kinase Activation In Vascular Smooth Muscle Cells From Spontaneously Hypertensive RatsCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 7 2002Takao Kubo SUMMARY 1.,We previously reported that activation function of mitogen-activated protein kinases (MAPK) is enhanced in aorta strips from both prehypertensive and hypertensive spontaneously hypertensive rats (SHR) and that this enhancement of MAPK activation results from enhanced MAPK activation reactivity to angiotensin (Ang) II in SHR aorta strips. 2.,The purpose of the present study was to examine whether the enhanced function of the vascular angiotensin system observed in SHR aorta strips results from genetic alterations of vascular smooth muscle cells from SHR. 3.,Basal MAPK activity was within normal limits in cells from 4-week-old SHR, whereas enzyme activity was enhanced in 9-week-old SHR compared with age-matched Wistar-Kyoto (WKY) rats. 4.,Mitogen-activated protein kinase activation reactivity to AngII and endothelin-1 was enhanced in 9-week-old SHR cells but not in 4-week-old SHR cells. The enhancement of basal MAPK activity in 9-week-old SHR cells was abolished by a combination of the angiotensin AT1 receptor antagonist losartan and the endothelin receptor antagonist BQ123. 5.,These findings suggest that MAPK activation function in 4-week-old SHR cells is not enhanced. Thus, it appears that factors outside vascular smooth muscle cells are needed for the enhanced MAPK activation observed in 4-week-old SHR aorta strips. In 9-week-old SHR, MAPK activation function is enhanced in cells themselves and this function may, at least in part, contribute to the enhanced MAPK activation observed in SHR aorta strips. [source] Does Bipolar Pacemaker Current Activate Blood Platelets?PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 5 2009GRUNDE GJESDAL M.D. Objective: The aim of this study was to investigate whether bipolar pacemaker current lead can activate blood platelets. The null hypothesis was that 1 minute of electrical stimulation of platelets would not influence their subsequent reactivity to adenosine diphosphate (ADP). Background: Both platelets and muscle cells contain actin and myosin filaments, and both cells are activated following calcium influx. Muscle cells open their calcium channels and contract when exposed to an electric current. Current through a bipolar pacemaker lead will expose a small volume of blood, including platelets, to the depolarizing current. Platelet activation may ensue, resulting in aggregation, release reaction, and contraction. In contrast, a unipolar pacemaker system will not depolarize blood, but transmit current directly into the myocardium, and the current afterward passes through other tissues before returning to the pacemaker can. Methods: Platelet-rich plasma was prepared from two healthy subjects. Platelet reactivity to the agonist ADP was tested in paired samples in an aggregometer in a case/control setup. Results: Eighteen of 46 tested pairs of platelet-rich plasma showed increased reactivity in the paced sample; 26 were unchanged while two showed decreased reactivity in the paced sample. Using a two-sided sign test, the null hypothesis was rejected (P = 0.0004). Conclusions: The study demonstrates increased reactivity to ADP in platelets exposed in vitro to stimulation by pacemaker current. The clinical relevance of these findings remains to be investigated. [source] Derailed regulates development of the Drosophila neuromuscular junctionDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2008Faith L.W. Liebl Abstract Neural function is dependent upon the proper formation and development of synapses. We show here that Wnt5 regulates the growth of the Drosophila neuromuscular junction (NMJ) by signaling through the Derailed receptor. Mutations in both wnt5 and drl result in a significant reduction in the number of synaptic boutons. Cell-type specific rescue experiments show that wnt5 functions in the presynaptic motor neuron while drl likely functions in the postsynaptic muscle cell. Epistatic analyses indicate that drl acts downstream of wnt5 to promote synaptic growth. Structure,function analyses of the Drl protein indicate that normal synaptic growth requires the extracellular Wnt inhibitory factor domain and the intracellular domain, which includes an atypical kinase. Our findings reveal a novel signaling mechanism that regulates morphology of the Drosophila NMJ. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source] The fine structure of the muscle system in the female of the orthonectid Intoshia variabili (Orthonectida)ACTA ZOOLOGICA, Issue 2 2003George S. Slyusarev Abstract The contractile system of the female Intoshia variabili (Orthonectida) consists of smooth muscles. The attachment of the longitudinal muscle fibres at the anterior and the posterior tips of the body is rather peculiar, accomplished by means of elongated terminal muscle cells piercing through several ciliated cells. In the last ciliated cell, the muscle cell invaginates the ciliated cell basal membrane almost up to the ciliated cell surface. Here, around the protrusion terminus, there is an electron-dense zone in contact with the cilia rootlets. [source] Basic fibrobrast growth factor induces the secretion of vascular endothelial growth factor by human aortic smooth muscle cells but not by endothelial cellsEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 10 2003F. Belgore Abstract Background, Endothelial cell dysfunction and smooth muscle cell (SMC) proliferation are major events in atherogenesis. Both cells are a source of growth factors that mediate cellular proliferation and chemotaxis. Inappropriate production of, and/or response to, these growth factors (such as vascular endothelial growth factor, VEGF, and basic fibroblast growth factor (bFGF)) may contribute to atherogenesis and therefore to disease progression. Methods, Production of VEGF and its soluble receptor (sFlt-1) by human SMCs and human umbilical endothelial cells (HUVECs) after stimulation with bFGF were examined by ELISA of cell culture media and by Western blotting. Results, Smooth muscle cells produced significantly more VEGF than HUVECs (P < 0·05) after 24 h of culture with bFGF levels , 0·001 µg mL,1. bFGF induced dose-dependent production of VEGF by SMCs, where maximum production was present in 1 µg mL,1 of bFGF. Conversely, the SMCs produced less sFlt-1 than HUVECs (P < 0·05). However, bFGF induced dose-dependent phosphorylation of Flt1 and another VEGF receptor, KDR, in HUVECs but not SMCs. There was no VEGF or sFLT-1 after 6 h of culture in any dose of bFGF in either type of cell. Conclusions, Differences in the production of VEGF and sFlt-1 by SMCs and HUVECs are consistent with the role of these cells in angiogenesis. Induction of VEGF production and expression by bFGF in these cells indicates that this growth factor may participate in angiogenesis indirectly by the induction of VEGF. The production of sFlt-1 by both cell types is in agreement with the notion that sFlt-1 may be involved in the regulation of VEGF activity. Additionally, the ability of bFGF to induce dose-dependent phosphorylation of KDR in HUVECs highlights the important role of bFGF in VEGF-mediated angiogenic processes. [source] Cell surface nucleolin on developing muscle is a potential ligand for the axonal receptor protein tyrosine phosphatase-,FEBS JOURNAL, Issue 20 2006Daniel E. Alete Reversible tyrosine phosphorylation, catalyzed by receptor tyrosine kinases and receptor tyrosine phosphatases, plays an essential part in cell signaling during axonal development. Receptor protein tyrosine phosphatase-, has been implicated in the growth, guidance and repair of retinal axons. This phosphatase has also been implicated in motor axon growth and innervation. Insect orthologs of receptor protein tyrosine phosphatase-, are also implicated in the recognition of muscle target cells. A potential extracellular ligand for vertebrate receptor protein tyrosine phosphatase-, has been previously localized in developing skeletal muscle. The identity of this muscle ligand is currently unknown, but it appears to be unrelated to the heparan sulfate ligands of receptor protein tyrosine phosphatase-,. In this study, we have used affinity chromatography and tandem MS to identify nucleolin as a binding partner for receptor protein tyrosine phosphatase-, in skeletal muscle tissue. Nucleolin, both from tissue lysates and in purified form, binds to receptor protein tyrosine phosphatase-, ectodomains. Its expression pattern also overlaps with that of the receptor protein tyrosine phosphatase-,-binding partner previously localized in muscle, and nucleolin can also be found in retinal basement membranes. We demonstrate that a significant amount of muscle-associated nucleolin is present on the cell surface of developing myotubes, and that two nucleolin-binding components, lactoferrin and the HB-19 peptide, can block the interaction of receptor protein tyrosine phosphatase-, ectodomains with muscle and retinal basement membranes in tissue sections. These data suggest that muscle cell surface-associated nucleolin represents at least part of the muscle binding site for axonal receptor protein tyrosine phosphatase-, and that nucleolin may also be a necessary component of basement membrane binding sites of receptor protein tyrosine phosphatase-,. [source] Evidence for an endothelium-derived hyperpolarizing factor in the superior mesenteric artery from rats with cirrhosisHEPATOLOGY, Issue 5 2000Eric Barriere In cirrhosis, in splanchnic arteries, endothelium-dependent relaxation may persist even if overactive nitric oxide synthase (NOS) and cyclooxygenase (COX) are inhibited. In normal arteries, a significant endothelium-dependent relaxation to acetylcholine persists after NOS/COX inhibition. This relaxation is caused by smooth muscle cell (SMC) membrane hyperpolarization, which is sensitive to a combination of the potassium channel blockers apamin and charybdotoxin, and is mediated by an endothelium-derived hyperpolarizing factor (EDHF). The aim of this study was to detect EDHF and evaluate its pathophysiologic role in isolated superior mesenteric arteries from cirrhotic rats. Arterial rings were obtained and exposed to Nw -nitro-L-arginine (L-NNA, a NOS inhibitor) and indomethacin (a COX inhibitor). Acetylcholine-induced membrane potential responses and concentration-response curves to the relaxant of acetylcholine were obtained with and without apamin plus charybdotoxin. Acetylcholine-induced responses were measured in certain rings from endothelium-denuded arteries. Contractions caused by the ,1 -adrenoceptor agonist phenylephrine were obtained in cirrhotic and normal rings with and without apamin and charybdotoxin. Significant acetylcholine-induced, endothelium-dependent, apamin- and charybdotoxin-sensitive, SMC membrane hyperpolarization and relaxation were found. An apamin- and charybdotoxin-sensitive hyporesponsiveness to the contractile action of phenylephrine was found in cirrhotic rings. In conclusion, in cirrhotic rats, in the superior mesenteric artery exposed to NOS/COX-inhibitors, an EDHF exists that may replace NOS/COX products to induce endothelium-dependent arterial relaxation. [source] Bladder smooth muscle cell phenotypic changes and implication of expression of contractile proteins (especially caldesmon) in rats after partial outlet obstructionINTERNATIONAL JOURNAL OF UROLOGY, Issue 6 2003SEIJI MATSUMOTO Abstract Background: The purpose of the present study was to investigate morphological changes in bladder smooth muscle of rats with partial outlet obstruction. We investigated smooth muscle cell phenotypic changes and implication of synthetic phenotype in contractility decrease and bladder compliance after bladder outlet obstruction. Methods: Partial bladder outlet obstruction was introduced in female rats. Bladder were removed at 1, 3, 6, 10 and 20 weeks after the obstruction. Temporal pattern of changes in bladder mass, light microscopic pathogenesis and phenotypic expression of the bladder smooth muscle cells in the electron micrographs were investigated. Expression of contractile protein was also investigated by the immunoblotting method. Results: Marked increase in bladder mass with marked thickening of smooth muscle layer was observed at 1 week after obstruction. The ratio of myocytes exhibiting contractile and synthetic phenotypes was almost constant until 6 weeks after the obstruction, but thereafter, synthetic phenotypes gradually increased and the ratio (synthetic/contractile phenotype) was 1.5-fold at 20 weeks after the obstruction. Caldesmon was most markedly expressed after the obstruction among contractile proteins examined by the immunoblotting method. Conclusion: Phenotypic changes were confirmed in bladder smooth muscle, and the decrease of the ratio of contractile phenotype was observed after long-term obstruction of the bladder outlet. Among the contractile proteins in the bladder smooth muscle cell, caldesmon was considered a reliable marker for predicting the pathogenetic conditions of the bladder. [source] High-phosphate-induced calcification is related to SM22, promoter methylation in vascular smooth muscle cellsJOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2010Addy Montes de Oca Abstract Hyperphosphatemia is closely related to vascular calcification in patients with chronic kidney disease. Vascular smooth muscle cells (VSMCs) exposed to high phosphate concentrations in vitro undergo phenotypic transition to osteoblast-like cells. Mechanisms underlying this transdifferentiation are not clear. In this study we used two in vitro models, human aortic smooth muscle cells and rat aortic rings, to investigate the phenotypic transition of VSMCs induced by high phosphate. We found that high phosphate concentration (3.3,mmol/L) in the medium was associated with increased DNA methyltransferase activity and methylation of the promoter region of SM22,. This was accompanied by loss of the smooth muscle cell,specific protein SM22,, gain of the osteoblast transcription factor Cbfa1, and increased alkaline phosphatase activity with the subsequent in vitro calcification. The addition of a demethylating agent (procaine) to the high-phosphate medium reduced DNA methyltransferase activity and prevented methylation of the SM22, promoter, which was accompanied by an increase in SM22, expression and less calcification. Additionally, downregulation of SM22,, either by siRNA or by a methyl group donor (S -adenosyl methionine), resulted in overexpression of Cbfa1. In conclusion, we demonstrate that methylation of SM22, promoter is an important event in vascular smooth muscle cell calcification and that high phosphate induces this epigenetic modification. These findings uncover a new insight into mechanisms by which high phosphate concentration promotes vascular calcification. © 2010 American Society for Bone and Mineral Research [source] Differential Effects of Vitamin D Analogs on Vascular Calcification,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2007Anna Cardús Abstract We tested the effects of calcitriol and its analog paricalcitol on VSMC calcification in vitro and in vivo. For that reason, cells and animals with five-sixths nephrectomy were treated with both compounds. Calcitriol, but not paricalcitol, increased VSMC calcification in vitro and in vivo independently of calcium and phosphate levels. This increase in calcification was parallel to an increase in the RANKL/OPG ratio. Introduction: Vascular calcification is a common finding in patients with endstage renal disease. Furthermore, those patients often present secondary hyperparathyroidism, partly because of a decrease of calcitriol synthesis on the kidney. Thus, one of the main therapeutic options is to treat those patients with calcitriol or analogs. However, this treatment presents unwanted side effects, such as increases in vascular calcification. Materials and Methods: We tested the effect on vascular smooth muscle cell (VSMC) calcification of calcitriol and one of its analogs, paricalcitol, in vitro and in vivo in animals with endstage renal disease. Results: Calcitriol increased calcification of VSMCs cultured in calcification media. This effect was not present when cells were incubated with paricalcitol. Furthermore, only cells incubated with calcitriol showed an increased RANKL/ osteoprotegerin (OPG) expression. Animals with renal failure treated with hypercalcemic doses of calcitriol and paricalcitol showed an increase in systolic blood pressure. However, diastolic blood pressure only raised significantly in those animals treated with paricalcitol. This effect led to a significant increase in pulse pressure in animals treated with calcitriol. The increase in pulse pressure was likely caused by the extensive calcification observed in arteries of animals treated with calcitriol. This increase in calcification was not seen in arteries of animals treated with paricalcitol, despite having similar levels of serum calcium and phosphorus as animals treated with calcitriol. Furthermore, the decreases in serum PTH levels were similar in both treatments. Conclusions: We conclude that paricalcitol has a different effect than calcitriol in VSMC calcification and that this could explain part of the differences observed in the clinical settings. [source] Close relation of arterial ICC-like cells to the contractile phenotype of vascular smooth muscle cellJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 4 2007Vladimír Pucovský Abstract This work aimed to establish the lineage of cells similar to the interstitial cells of Cajal (ICC), the arterial ICC-like (AIL) cells, which have recently been described in resistance arteries, and to study their location in the artery wall. Segments of guinea-pig mesenteric arteries and single AIL cells freshly isolated from them were used. Confocal imaging of immunostained cells or segments and electron microscopy of artery segments were used to test for the presence and cellular localization of selected markers, and to localize AIL cells in intact artery segments. AIL cells were negative for PGP9.5, a neural marker, and for von Willebrand factor (vWF), an endothelial cell marker. They were positive for smooth muscle ,-actin and smooth muscle myosin heavy chain (SM-MHC), but expressed only a small amount of smoothelin, a marker of contractile smooth muscle cells (SMC), and of myosin light chain kinase (MLCK), a critical enzyme in the regulation of smooth muscle contraction. Cell isolation in the presence of latrunculin B, an actin polymerization inhibitor, did not cause the disappearance of AIL cells from cell suspension. The fluorescence of basal lamina protein collagen IV was comparable between the AIL cells and the vascular SMCs and the fluorescence of laminin was higher in AIL cells compared to vascular SMCs. Moreover, cells with thin processes were found in the tunica media of small resistance arteries using transmis-sion electron microscopy. The results suggest that AIL cells are immature or phenotypically modulated vascular SMCs constitutively present in resistance arteries. [source] Modulation of cyclin dependent kinase inhibitor proteins and ERK1/2 activity in allylamine-injured vascular smooth muscle cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2004Sarah A. Jones Abstract Chronic oxidative injury by allylamine (AAM) induces proliferative vascular smooth muscle cell (vSMC) phenotypes in the rat aorta similar to those seen in rodent and human atherosclerotic lesions. The proliferative advantage of AAM vSMC compared to control cells is maintained with serial passage of the cells and the advantage is nullified when AAM cells are seeded on a collagen substrate. In this study, we evaluate the potential role of cyclin dependent kinase inhibitors, p27 and p21, and mitogen activated protein (MAP) kinases, ERK1/2, in mediating the proliferative advantage of AAM stressed vSMC over control cells on plastic or collagen substrates. p27 levels in randomly cycling cells were comparable in both cell types irrespective of the substrate. In contrast, basal levels of p21 were 1.9,±,0.3 (P,<,0.05)-fold higher in randomly cycling AAM cells seeded on plastic compared to controls, a difference that was lost on a collagen substrate. Following G0 synchronization, basal levels of both p27 and p21 were higher in AAM cells seeded on plastic compared to controls (1.7,±,0.2 and 2.0,±,0.3-fold, respectively, P,<,0.05), but these differences were lost upon mitogenic stimulation. Pyrrolidine dithiocarbamate (PDTC) decreased p27 and p21 levels in cycling AAM cells relative to controls in a substrate-dependent manner. AAM cells seeded on plastic exhibited enhanced ERK1/2 activation upon mitogenic stimulation; seeding on collagen nullified this advantage. The duration of ERK1/2 activation was prolonged in AAM cells independently of the seeding substrate. We conclude that substrate-dependent acquisition of proliferative phenotypes following repeated cycles of AAM injury correlates with modulation of the cyclin dependent kinase inhibitors, p27 and p21. © 2004 Wiley-Liss, Inc. [source] Age-related differences in insulin-like growth factor-1 receptor signaling regulates Akt/FOXO3a and ERK/Fos pathways in vascular smooth muscle cellsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2008Muyao Li Advanced age is a major risk factor for atherosclerosis, but how aging per se influences pathogenesis is not clear. Insulin-like growth factor-1 receptor (IGF-1R) promotes aortic vascular smooth muscle cell (VSMC) growth, migration, and extracellular matrix formation, but how IGF-1R signaling changes with age in VSMC is not known. We previously found age-related differences in the activation of Akt/FOXO3a and ERK1/2 pathways in VSMC, but the upstream signaling remains unclear. Using explanted VSMC from Fischer 344/Brown Norway F1 hybrid rats shown to display age-related vascular pathology similar to humans, we compared IGF-1R expression in early passages of VSMC and found a constitutive activation of IGF-1R in VSMC from old compared to young rats, including IGF-1R expression and its tyrosine kinase activity. The link between IGF-1R activation and the Akt/FOXO3a and ERK pathways was confirmed through the induction of IGF-1R with IGF-1 in young cells and attenuation of IGF-1R with an inhibitor in old cells. The effects of three kinase inhibitors: AG1024, LY294002, and TCN, were compared in VSMC from old rats to differentiate IGF-1R from other upstream signaling that could also regulate the Akt/FOXO and ERK pathways. Genes for p27kip-1, catalase and MnSOD, which play important roles in the control of cell cycle arrest and stress resistance, were found to be FOXO3a-targets based on FOXO3a-siRNA treatment. Furthermore, IGF-1R signaling modulated these genes through activation of the Akt/FOXO3a pathway. Therefore, activation of IGF-1R signaling influences VSMC function in old rats and may contribute to the increased risk for atherosclerosis. J. Cell. Physiol. 217: 377,387, 2008. © 2008 Wiley-Liss, Inc. [source] Involvement of brain-derived neurotrophic factor (BDNF) in the functional elimination of synaptic contacts at polyinnervated neuromuscular synapses during developmentJOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2010N. Garcia Abstract We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75NTR in the neuromuscular synapses of postnatal rats (P6,P7) during the synapse elimination period. The receptor protein p75NTR is present in the nerve terminal, muscle cell and glial Schwann cell whereas BDNF and trkB proteins can be detected mainly in the pre- and postsynaptic elements. Exogenously applied BDNF (10 nM for 3 hr or 50 nM for 1 hr) increases ACh release from singly and dually innervated synapses. This effect may be specific for BDNF because the neurotrophin NT-4 (2,8 nM) does not modulate release at P6,P7. Blocking the receptors trkB and p75NTR (with K-252a and anti-p75-192-IgG, respectively) completely abolishes the potentiating effect of exogenous BDNF. In addition, exogenous BDNF transiently recruits functionally depressed silent terminals, and this effect seems to be mediated by trkB. Calcium ions, the L-type voltage-dependent calcium channels and protein kinase C are involved in BDNF-mediated nerve ending recruitment. Blocking experiments suggest that endogenous BDNF could operate through p75NTR receptors coupled to potentiate ACh release in all nerve terminals because the anti-p75-192-IgG reduces release. However, blocking the trkB receptor (K-252a) or neutralizing endogenous BDNF with the trkB-IgG fusion protein reveals a trkB-mediated release inhibition on almost mature strong endings in dual junctions. Taken together these results suggest that a BDNF-induced p75NTR -mediated ACh release potentiating mechanism and a BDNF-induced trkB-mediated release inhibitory mechanism may contribute to developmental synapse disconnection. © 2009 Wiley-Liss, Inc. [source] Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit vascular smooth muscle cell proliferation via differential effects on the cell cycleJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2003Gavin Brooks ABSTRACT Abnormal vascular smooth muscle cell (VSMC) proliferation plays an important role in the pathogenesis of both atherosclerosis and restenosis. Recent studies suggest that high-dose salicylates, in addition to inhibiting cyclooxygenase activity, exert an antiproliferative effect on VSMC growth both in-vitro and in-vivo. However, whether all non-steroidal anti-inflammatory drugs (NSAIDs) exert similar antiproliferative effects on VSMCs, and do so via a common mechanism of action, remains to be shown. In this study, we demonstrate that the NSAIDs aspirin, sodium salicylate, diclofenac, ibuprofen, indometacin and sulindac induce a dose-dependent inhibition of proliferation in rat A10 VSMCs in the absence of significant cytotoxicity. Flow cytometric analyses showed that exposure of A10 cells to diclofenac, indometacin, ibuprofen and sulindac, in the presence of the mitotic inhibitor, nocodazole, led to a significant G0/G1 arrest. In contrast, the salicylates failed to induce a significant G1 arrest since flow cytometry profiles were not significantly different from control cells. Cyclin A levels were elevated, and hyperphosphorylated p107 was present at significant levels, in salicylate-treated A10 cells, consistent with a post-G1/S block, whereas cyclin A levels were low, and hypophosphorylated p107 was the dominant form, in cells treated with other NSAIDs consistent with a G1 arrest. The ubiquitously expressed cyclin-dependent kinase (CDK) inhibitors, p21 and p27, were increased in all NSAID-treated cells. Our results suggest that diclofenac, indometacin, ibuprofen and sulindac inhibit VSMC proliferation by arresting the cell cycle in the G1 phase, whereas the growth inhibitory effect of salicylates probably affects the late S and/or G2/M phases. Irrespective of mechanism, our results suggest that NSAIDs might be of benefit in the treatment of certain vasculoproliferative disorders. [source] Scutellaria baicalensis inhibits liver fibrosis induced by bile duct ligation or carbon tetrachloride in ratsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2002Ji-Xing Nan This study was carried out to investigate the antifibrotic effects of methanol extracts from the traditional Chinese medicinal herb, the root of Scutellaria baicalensis Georgi, on liver fibrosis induced by bile duct ligation and scission (BDL) or carbon tetrachloride (CCl4) in rats. Liver fibrosis was assessed by histological observations and by measuring levels of liver hydroxy-proline, lipid peroxidation based on malondialdehyde (MDA) production, and serum enzyme activities. The morphological characteristics of liver tissue were examined by Masson's trichrome staining and immunostaining against smooth muscle cell ,-actin. In both models, the levels of hydroxyproline and MDA in liver were significantly increased. Treatment with a methanol extract of S. baicalensis significantly reduced the levels of liver hydroxyproline and MDA, with improved histological findings. In both models, the liver areas positive for smooth muscle cell ,-actin were considerably decreased by treatment with oral methanol extract of S. baicalensis (150 mg kg,1 daily for 28 days). A methanol extract of S. baicalensis root inhibits fibrosis and lipid peroxidation in rat liver induced by BDL or CCl4. [source] The Ethanol-soluble Part of a Hot-water Extract from Artemisia iwayomogi Inhibits Liver Fibrosis Induced by Carbon Tetrachloride in RatsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2000EUN-JEON PARK This study was carried out to investigate the protective effects of the hot-water extract from Artemisia iwayomogi (Compositae) on carbon tetrachloride-induced liver fibrosis in rats. Liver injury was induced by oral administration of carbon tetrachloride (1 mL kg,1) twice a week during 4 weeks of A. iwayomogi treatment. Extracts from A. iwayomogi were prepared and administered to rats orally (2 g kg,1 as A. iwayomogi for 4 weeks) as follows: group 1, hot-water extract; group 2, ethanol-soluble part of hot-water extract; group 3, ethanol-insoluble part of hot-water extract; and group 4, methanol extract. In rats treated with the ethanol-soluble part of the hot-water extract, liver hydroxyproline content was reduced to 74% that of carbon tetrachloride control rats (P < 0.05). Protein expression of alpha smooth muscle cell like actin was also decreased in rats treated with the ethanol-soluble part of the hot-water extract, which indicates inhibition of hepatic stellate cell activation. Liver malondialdehyde levels were significantly lowered in rats treated with the ethanol-soluble part of hot-water extract (P < 0.05). Serum cholesterol levels in rats treated with hot-water extract, ethanol-soluble or -insoluble parts of hot-water extract or methanol extract were significantly reduced when compared with those of carbon tetrachloride control rats (P < 0.05). The ethanol-soluble part of the hot-water extract from A. iwayomogi inhibited fibrosis and lipid peroxidation in rats with liver fibrosis induced by carbon tetrachloride. Both hot-water extract (either ethanol-soluble or -insoluble) and methanol extract of A. iwayomogi also lowered serum cholesterol levels in fibrotic rats. [source] |