Home About us Contact | |||
Murine ES Cells (murine + e_cell)
Selected AbstractsProperties of murine embryonic stem cells maintained on human foreskin fibroblasts without LIF,MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2008G.L. Meng Abstract In embryonic stem (ES) cells, leukemia inhibitory factor (LIF)/STAT3, wnt and nodal/activin signaling are mainly active to control pluripotency during expansion. To maintain pluripotency, ES cells are typically cultured on feeder cells of varying origins. Murine ES cells are commonly cultured on murine embryonic fibroblasts (MEFs), which senesce early and must be frequently prepared. This process is laborious and leads to batch variation presenting a challenge for high-throughput ES cell expansion. Although some cell lines can be sustained by exogenous LIF, this method is costly. We present here a novel and inexpensive culture method for expanding murine ES cells on human foreskin fibroblast (HFF) feeders. After 20 passages on HFFs without LIF, ES cell lines showed normal expression levels of pluripotency markers, maintained a normal karyotype and retained the ability to contribute to the germline. As HFFs do not senesce for at least 62 passages, they present a vast supply of feeders. Mol. Reprod. Dev. 75: 614,622, 2008. © 2007 Wiley-Liss, Inc. [source] E-cadherin synergistically induces hepatospecific phenotype and maturation of embryonic stem cells in conjunction with hepatotrophic factorsBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2005Anouska Dasgupta Abstract Since effective cell sourcing is a major challenge for the therapeutic management of liver disease and liver failure, embryonic stem (ES) cells are being widely investigated as a promising source of hepatic-like cells with their proliferative and pluripotent capacities. Cell,cell interactions are crucial in embryonic development modulating adhesive and signaling functions; specifically, the cell,cell adhesion ligand, cadherin is instrumental in gastrulation and hepatic morphogenesis. Inspired by the role of cadherins in development, we investigated the role of expression of E-cadherin in cultured murine ES cells on the induction of hepatospecific phenotype and maturation. The cadherin-expressing embryonic stem (CE-ES) cells intrinsically formed pronounced cell aggregates and cuboidal morphology whereas cadherin-deficient cadherin-expressing embryonic stem (CD-ES) cells remained more spread out and corded in morphology. Through controlled stimulation with single or combined forms of hepatotrophic growth factors; hepatocyte growth factor (HGF), dexamethasone (DEX) and oncostatin M (OSM), we investigated the progressive maturation of CE-ES cells, in relation to the control, CD-ES cells. Upon growth factor treatment, the CE-ES cells adopted a more compacted morphology, which exhibited a significant hepatocyte-like cuboidal appearance in the presence of DEX-OSM-HGF. In contrast, the CD-ES cells exhibited a mixed morphology and appeared to be more elongated in the presence of DEX-OSM-HGF. Reverse-transcriptase polymerase chain reaction was used to delineate the most differentiating condition in terms of early (alpha-fetoprotein (AFP)), mid (albumin), and late-hepatic (glucose-6-phosphatase) markers in relation to growth factor presentation for both CE-ES and CD-ES cells. We report that following the most differentiating condition of DEX-OSM-HGF stimulation, CE-ES cells expressed increased levels of albumin and glucose-6-phosphatase, whereas the CD-ES cells showed low levels of AFP and marginal levels of albumin and glucose-6-phosphatase. These trends suggest that the membrane expression of E-cadherin in ES cells can elicit a marked response to growth factor stimulation and lead to the induction of later stages of hepatocytic maturation. Thus, cadherin-engineered ES cells could be used to harness the cross-talk between the hepatotrophic and cadherin-based signaling pathways for controlled acceleration of ES hepatodifferentiation. © 2005 Wiley Periodicals, Inc. [source] Maintenance of pluripotency in mouse embryonic stem cells cultivated in stirred microcarrier culturesBIOTECHNOLOGY PROGRESS, Issue 2 2010Paulo A. N. Marinho Abstract The development of efficient and reproducible culture systems for embryonic stem (ES) cells is an essential pre-requisite for regenerative medicine. Culture scale-up ensuring maintenance of cell pluripotency is a central issue, because large amounts of pluripotent cells must be generated to warrant that differentiated cells deriving thereof are transplanted in great amounts and survive the procedure. This study aimed to develop a robust scalable cell expansion system, using a murine embryonic stem cell line that is feeder-dependent and adapted to serum-free medium, thus representing a more realistic model for human ES cells. We showed that high concentrations of murine ES cells can be obtained in stirred microcarrier-based spinner cultures, with a 10-fold concentration of cells per volume of medium and a 5-fold greater cell concentration per surface area, as compared to static cultures. No differences in terms of pluripotency and differentiation capability were observed between cells grown in traditional static systems and cells that were replated onto the traditional system after being expanded on microcarriers in the stirred system. This was verified by morphological analyses, quantification of cells expressing important pluripotency markers (Oct-4, SSEA-1, and SOX2), karyotype profile, and the ability to form embryoid bodies with similar sizes, and maintaining their intrinsic ability to differentiate into all three germ layers. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] |