Municipal Wastewater Treatment Plant (municipal + wastewater_treatment_plant)

Distribution by Scientific Domains


Selected Abstracts


Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2010
Chris D. Metcalfe
Abstract Antidepressants are a widely prescribed group of pharmaceuticals that can be biotransformed in humans to biologically active metabolites. In the present study, the distribution of six antidepressants (venlafaxine, bupropion, fluoxetine, sertraline, citalopram, and paroxetine) and five of their metabolites was determined in a municipal wastewater treatment plant (WWTP) and at sites downstream of two WWTPs in the Grand River watershed in southern Ontario, Canada. Fathead minnows (Pimephales promelas) caged in the Grand River downstream of a WWTP were also evaluated for accumulated antidepressants. Finally, drinking water was analyzed from a treatment plant that takes its water from the Grand River 17 km downstream of a WWTP. In municipal wastewater, the antidepressant compounds present in the highest concentrations (i.e., >0.5 g/L) were venlafaxine and its two demethylation products, O - and N -desmethyl venlafaxine. Removal rates of the target analytes in a WWTP were approximately 40%. These compounds persisted in river water samples collected at sites up to several kilometers downstream of discharges from WWTPs. Venlafaxine, citalopram, and sertraline, and demethylated metabolites were detected in fathead minnows caged 10 m below the discharge from a WWTP, but concentrations were all <7 g/kg wet weight. Venlafaxine and bupropion were detected at very low (<0.005 g/L) concentrations in untreated drinking water, but these compounds were not detected in treated drinking water. The present study illustrates that data are needed on the distribution in the aquatic environment of both the parent compound and the biologically active metabolites of pharmaceuticals. Environ. Toxicol. Chem. 2010;29:79,89. 2009 SETAC [source]


Sequential anaerobic/aerobic biological treatment of olive mill wastewater and municipal wastewater

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 9 2006
Nikolaos Gizgis
Abstract This work investigated the efficiency of the combined anaerobic/aerobic biological co-treatment of olive mill wastewater and primary municipal wastewater. A laboratory-scale (6.5 L) upflow anaerobic sludge bed reactor received a mixture of olive mill wastewater and primary municipal wastewater at a loading rate ranging between 3 and 7 kg chemical oxygen demand (COD) m,3 day,1. The input COD concentration ranged between 1800 and 4400 mg L,1. The anaerobic reactor was operated at mesophilic conditions (35 C). The effluent organic load was between 400 and 600 mg COD L,1, while the suspended solids removal efficiency varied between 75 and 95%. Average biogas production ranged between 3 and 4 L g,1 COD removed. The anaerobic reactor effluent was further treated in a laboratory-scale activated sludge treatment plant. Aerobic treatment reduced the organic load even further to 85,175 mg COD L,1. However, the final effluent still retained a significant level of colour. Removal of colour was possible by ozonation or coagulation. Finally, the treated effluent was non-ecotoxic, as indicated by the Daphnia magna toxicity test. This treatment method showed that it is feasible to treat olive mill wastewater in a municipal wastewater treatment plant by means of a high-rate anaerobic reactor located between the primary clarifier and the aeration tank. Copyright 2006 Society of Chemical Industry [source]


Evaluation of a simple batch distillation process for treating wastes from metalworking industries

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 5 2004
P Caizares
Abstract A simple batch distillation process for the treatment of two types of industrial waste generated in a metalworking factory has been evaluated. Both types of waste are oil-in-water emulsions composed of numerous compounds and each type has a high content of water-soluble species. The water-soluble nature of the wastes precludes the use of conventional treatment technologies, such as ultrafiltration or chemical emulsion breaking, since they need to be complemented with additional treatment processes that would probably increase the cost considerably. A simple characterization of the liquid,vapour equilibrium and a scale-up study has demonstrated the applicability of this technology. The process allows 90% of the waste to be recovered as water, thus achieving the required quality limits for discharge into a municipal wastewater treatment plant. An approximate estimation of capital investment and operating costs for an existing case has shown the economic viability of this process. Copyright 2004 Society of Chemical Industry [source]


Development of a mechanistic model for biological nutrient removal activated sludge systems and application to a full-scale WWTP

AICHE JOURNAL, Issue 6 2010
Bing-Jie Ni
Abstract In wastewater treatment plants (WWTPs) the production of nitrite as an intermediate in the biological nutrient removal (BNR) process has been widely observed, but not been taken into account by most of the conventional activated sludge models yet. This work aims to develop a mechanistic mathematical model to evaluate the BNR process after resolving such a problem. A mathematical model is developed based on the Activated Sludge Model No.3 (ASM3) and the EAWAG Bio-P model with an incorporation of the two-step nitrification,denitrification, the anoxic P uptake, and the associated two-step denitrification by phosphorus accumulating organisms. The database used for simulations originates from a full-scale BNR municipal wastewater treatment plant. The influent wastewater composition is characterized using batch tests. Model predictions are compared with the measured concentrations of chemical oxygen demand (COD), NH -N, NO -N, NO -N, PO -P, and mixed liquid volatile suspended solids. Simulation results indicate that the calibrated model is capable of predicting the microbial growth, COD removal, nitrification and denitrification, as well as aerobic and anoxic P removal. Thus, this model can be used to evaluate and simulate full-scale BNR activated sludge WWTPs. 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Modeling and simulation of the sequencing batch reactor at a full-scale municipal wastewater treatment plant

AICHE JOURNAL, Issue 8 2009
Bing-Jie Ni
Abstract In this work, we attempted to modify the Activated Sludge Model No.3 and to simulate the performance of a full-scale sequencing batch reactor (SBR) plant for municipal wastewater treatment. The long-term dynamic data from the continuous operation of this SBR plant were simulated. The influent wastewater composition was characterized using batch measurements. After incorporating all the relevant processes, the sensitivity of the stoichiometric and kinetic coefficients for the model was thoroughly analyzed prior to the model calibration. The modified model was calibrated and validated with the data from both batch- and full-scale experiments. Model predictions were compared with routine data in terms of chemical oxygen demand, NH4+ -N and mixed liquid volatile suspended solids in the SBR, combined with batch experimental data under different conditions. The model predictions match the experimental results well, demonstrating that the model is appropriate to simulate the performance of a full-scale wastewater treatment plant even operated under perturbation conditions. 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]