Motile Cilia (motile + cilium)

Distribution by Scientific Domains

Selected Abstracts

Ciliary biology: Understanding the cellular and genetic basis of human ciliopathies,

Magdalena Cardenas-Rodriguez
Abstract Motile cilia have long been known to play a role in processes such as cell locomotion and fluid movement whereas the functions of primary cilia have remained obscure until recent years. To date, ciliary dysfunction has been shown to be causally linked to a number of clinical manifestations that characterize the group of human disorders known as ciliopathies. This classification reflects a common or shared cellular basis and implies that it is possible to associate a series of different human conditions with ciliary dysfunction, which allows gaining insight into the cellular defect in disorders of unknown etiology solely based on phenotypic observations. Furthermore, to date we know that the cilium participates in a number of biological processes ranging from chemo- and mechanosensation to the transduction of a growing list of paracrine signaling cascades that are critical for the development and maintenance of different tissues and organs. Consequently, the primary cilium has been identified as a key structure necessary to regulate and maintain cellular and tissue homeostasis and thus its study is providing significant information to understand the pathogenesis of the different phenotypes that characterize these human conditions. Finally, the similarities between different ciliopathies at the phenotypic level are proving to be due to their shared cellular defect and also their common genetic basis. To this end, recent studies are showing that mutations in a given ciliary gene often appear involved in the pathogenesis of more than one clinical entity, complicating their genetic dissection, and hindering our ability to generate accurate genotype,phenotype correlations. 2009 Wiley-Liss, Inc. [source]

Protein kinase A RII-like (R2D2) proteins exhibit differential localization and AKAP interaction,

CYTOSKELETON, Issue 7 2008
Amy E. Hanlon Newell
Abstract A-kinase anchoring proteins (AKAPs) bind to protein kinase A (PKA) via an amphipathic helix domain that interacts with a dimerization/docking domain on the regulatory (R) subunit of PKA. Four other mammalian proteins (ROPN1, ASP, SP17, and CABYR) also contain a highly conserved RII dimerization/docking (R2D2) domain, suggesting all four proteins may interact with all AKAPs in a manner similar to RII. All four of these proteins were originally detected in the flagellum of mammalian sperm. In this report, we demonstrate that all four R2D2 proteins are expressed in a wide variety of tissues and three of the proteins SP17, CABYR, and ASP are located in motile cilia of human bronchus and fallopian tubes. In addition, we detect SP17 in primary cilia. We also provide evidence that ROPN1 and ASP bind to a variety of AKAPs and this interaction can be disrupted with anchoring inhibitor peptides. The interaction of SP17 and CABYR with AKAPs appears to be much more limited. None of the R2D2 proteins appears to bind cAMP, a fundamental characteristic of the regulatory subunits of PKA. These observations suggest that R2D2 proteins utilize docking interactions with AKAPs to accomplish their function of regulating cilia and flagella. Based on location, affinity for AKAPs and lack of affinity for cAMP, it appears that each R2D2 protein has a unique role in this process. Cell Motil. Cytoskeleton 2008. 2008 Wiley-Liss, Inc. [source]

Oda16/Wdr69 is essential for axonemal dynein assembly and ciliary motility during zebrafish embryogenesis

Chunlei Gao
Abstract In the alga Chlamydomonas reinhardtii, Oda16 functions during ciliary assembly as an adaptor for intraflagellar transport of outer arm dynein. Oda16 orthologs only occur in genomes of organisms that use motile cilia; however, such cilia play multiple roles during vertebrate development and the contribution of Oda16 to their assembly remains unexplored. We demonstrate that the zebrafish Oda16 ortholog (Wdr69) is expressed in organs with motile cilia and retains a role in dynein assembly. Antisense morpholino knockdown of Wdr69 disrupts ciliary motility and results in multiple phenotypes associated with vertebrate ciliopathies. Affected cilia included those in Kupffer's vesicle, where Wdr69 plays a role in generation of asymmetric fluid flow and establishment of organ laterality, and otic vesicles, where Wdr69 is needed to develop normal numbers of otoliths. Analysis of cilium ultrastructure revealed loss of outer dynein arms in morphant embryos. These results support a remarkable level of functional conservation for Oda16/Wdr69. Developmental Dynamics 239:2190,2197, 2010. 2010 Wiley-Liss, Inc. [source]

Morphogenesis of the node and notochord: The cellular basis for the establishment and maintenance of left,right asymmetry in the mouse

Jeffrey D. Lee
Abstract Establishment of left,right asymmetry in the mouse embryo depends on leftward laminar fluid flow in the node, which initiates a signaling cascade that is confined to the left side of the embryo. Leftward fluid flow depends on two cellular processes: motility of the cilia that generate the flow and morphogenesis of the node, the structure where the cilia reside. Here, we provide an overview of the current understanding and unresolved questions about the regulation of ciliary motility and node structure. Analysis of mouse mutants has shown that the motile cilia must have a specific structure and length, and that they must point posteriorly to generate the necessary leftward fluid flow. However, the precise structure of the motile cilia is not clear and the mechanisms that position cilia on node cells have not been defined. The mouse node is a teardrop-shaped pit at the distal tip of the early embryo, but the morphogenetic events that create the mature node from cells derived from the primitive streak are only beginning to be characterized. Recent live imaging experiments support earlier scanning electron microscopy (SEM) studies and show that node assembly is a multi-step process in which clusters of node precursors appear on the embryo surface as overlying endoderm cells are removed. We present additional SEM and confocal microscopy studies that help define the transition stages during node morphogenesis. After the initiation of left-sided signaling, the notochordal plate, which is contiguous with the node, generates a barrier at the embryonic midline that restricts the cascade of gene expression to the left side of the embryo. The field is now poised to dissect the genetic and cellular mechanisms that create and organize the specialized cells of the node and midline that are essential for left,right asymmetry. Developmental Dynamics 237:3464,3476, 2008. 2008 Wiley-Liss, Inc. [source]

Colloidal Films That Mimic Cilia

Fang Liu
Abstract Cilia are wavy hair-like structures that extend outward from surfaces of various organisms. They are classified into two general categories, primary cilia, which exhibit sensing attributes, and motile cilia, which exert mechanical forces. A new poly(2-(N,N -dimethylamino)ethyl methacrylate- co -n-butyl acrylate- co - N,N -(dimethylamino) azobenzene acrylamide) (p(DMAEMA/nBA/DMAAZOAm) copolymer is prepared using colloidal synthesis, which, upon coalescence, form films capable of generating surfaces with cilia-like features. While film morphological features allow the formation of wavy whiskers, the chemical composition of the copolymer facilitates chemical, thermal, and electromagnetic responses manifested by simultaneous shape and color changes as well as excitation wavelength dependent fluorescence. These studies demonstrate that synthetically produced polymeric films can exhibit combined thermal, chemical, and electromagnetic sensing leading to locomotive and color responses, which may find numerous applications in sensing devices, intelligent actuators, defensive mechanisms, and others. [source]

Making sense of cilia in disease: The human ciliopathies,

Kate Baker
Abstract Ubiquitous in nature, cilia and flagella comprise nearly identical structures with similar functions. The most obvious example of the latter is motility: driving movement of the organism or particle flow across the epithelial surface in fixed structures. In vertebrates, such motile cilia are evident in the respiratory epithelia, ependyma, and oviducts. For over a century, non-motile cilia have been observed on the surface of most vertebrate cells but until recently their function has eluded us. Gathering evidence now points to critical roles for the mono-cilium in sensing the extracellular environment, and perturbation of this function gives rise to a predictable panoply of clinical problems. We review the common clinical phenotypes associated with ciliopathies and interrogate Online Mendelian Inheritance in Man (OMIM) to compile a comprehensive list of putative disorders in which ciliary dysfunction may play a role. 2009 Wiley-Liss, Inc. [source]