Home About us Contact | |||
Morphological Differentiation (morphological + differentiation)
Selected AbstractsAcoustic and Morphological Differentiation in the Frog Allobates femoralis: Relationships with the Upper Madeira River and Other Potential Geological BarriersBIOTROPICA, Issue 5 2008Pedro Ivo Simões ABSTRACT We studied patterns of call acoustics and external morphological differentiation in populations of the dart-poison frog Allobates femoralis occurring in forested areas along a 250-km stretch of the upper Madeira River, Brazil. Multivariate analyses of variance using principal components representing shared acoustic and morphological parameters distinguished three groups in relation to call structure and external morphology: (1) populations belonging to a two-note call morphotype; (2) populations with four-note calls inhabiting the left riverbank; and (3) populations with four-note calls inhabiting the right riverbank. Our results report a case of Amazonian anuran diversity hidden by current taxonomy and provide evidence for the upper Madeira River being a boundary between distinct populations of A. femoralis, and suggest a new taxonomic interpretation for these groups. Samples that did not fit into the general differentiation pattern and the existence of a well-defined contact zone between two morphotypes on the left riverbank indicate that mechanisms complementary to river-barrier hypotheses are necessary to explain the phenotypic differentiation between populations. Our study shows that at least one anuran species shows congruence between population differentiation and separation by a large Amazonian river, as documented for birds and mammals. Conservation efforts should not consider the taxon now known as A. femoralis as a homogeneous entity. There is much within-taxon variability, which can be probably explained partly by the existence of cryptic species, partly by geological barriers and part of which currently has no obvious explanation. RESUMO Estudamos padrões de diferenciação em acústica de cantos e morfologia externa em populações da rã-venenosa Allobates femoralis em áreas de floresta ao longo do alto Rio Madeira, Estado de Rondônia, Brasil, utilizando dados de 19 pontos de coleta estabelecidos em um trecho de 250 km do rio. Dois morfotipos distintos foram encontrados na área de estudo. Um, com cantos de anúncio constituídos por 2 notas, ocorre apenas na porção superior da margem esquerda do Rio Madeira, alcançando uma zona de contato com o segundo morfotipo à jusante, onde não há qualquer barreira de dispersão aparente na atualidade. O segundo morfotipo, com cantos constituídos por 4 notas, ocorre em ambos os lados do rio. Análises de variância multivariadas usando componentes principais representando parâmetros acústicos e morfológicos apontaram três grupos distintos em relação à estrutura dos cantos e morfologia externa: (1) populações pertencentes ao morfotipo com cantos de 2 notas; (2) populações pertencentes ao morfotipo com cantos de 4 notas da margem esquerda; e (3) populações pertencentes ao morfotipo de 4 notas da margem direita. Nossos resultados apontam um caso de diversidade de anuros amazônicos mascarada pela taxonomia atual e fornece evidências sobre o papel do Rio Madeira como um limite entre populações diferenciadas da espécie, sugerindo uma Re-interpretação taxonômica destes grupos. Amostras que não se encaixam no padrão geral de diferenciação e a existência de uma zona de contato bem definida entre dois morfotipos na margem esquerda indicam que mecanismos complementares à hipóteses de rios como barreiras são necessários para explicar a diferenciação fenotípica de Allobates femoralis. Nosso estudo mostra que ao menos uma espécie de anuro apresenta congruência entre diferenciação populacional e sua separação por um grande rio amazônico, como já documentado para aves e mamíferos. Esforços de conservação não deveriam considerar o táxon Allobates femoralis como uma entidade homogênea. Há uma grande variabilidade dentro deste táxon, o que pode ser provavelmente explicado em parte pela existência de espécies crípticas, em parte por barreiras geológicas e em parte por mecanismos ainda desconhecidos. [source] Morphological differences between two ecologically similar sympatric fishesJOURNAL OF FISH BIOLOGY, Issue 10 2009I. P. Helland Morphological differentiation and microhabitat segregation of two ecologically similar populations of pelagic planktivorous fishes, Coregonus albula and the smaller Coregonus fontanae, were studied in Lake Stechlin (northern Germany). Both populations performed diel vertical migrations, although C. fontanae was always situated in deeper pelagic water than C. albula both during day and night. Landmark-based geometric morphometrics revealed that sympatric C. albula and C. fontanae differ in external morphology, with main differences found in head length and eye position, as well as in length and width of the caudal peduncle. Moreover, while C. albula has a similar morphology over all sizes, the shape of C. fontanae changes with size. Accordingly, the morphology of the two is most different at smaller size. Although the morphological differences may reflect adaptations to the slightly differing microhabitats of the two populations, there is no conclusive evidence that this correspondence between ecology and morphology is the main mechanism behind the coexistence of the closely related coregonids in Lake Stechlin. [source] Differential admixture shapes morphological variation among invasive populations of the lizard Anolis sagreiMOLECULAR ECOLOGY, Issue 8 2007JASON J. KOLBE Abstract The biological invasion of the lizard Anolis sagrei provides an opportunity to study evolutionary mechanisms that produce morphological differentiation among non-native populations. Because the A. sagrei invasion represents multiple native-range source populations, differential admixture as well as random genetic drift and natural selection, could shape morphological evolution during the invasion. Mitochondrial DNA (mtDNA) analyses reveal seven distinct native-range source populations for 10 introduced A. sagrei populations from Florida, Louisiana and Texas (USA), and Grand Cayman, with 2,5 native-range sources contributing to each non-native population. These introduced populations differ significantly in frequencies of haplotypes from different native-range sources and in body size, toepad-lamella number, and body shape. Variation among introduced populations for both lamella number and body shape is explained by differential admixture of various source populations; mean morphological values of introduced populations are correlated with the relative genetic contributions from different native-range source populations. The number of source populations contributing to an introduced population correlates with body size, which appears independent of the relative contributions of particular source populations. Thus, differential admixture of various native-range source populations explains morphological differences among introduced A. sagrei populations. Morphological differentiation among populations is compatible with the hypothesis of selective neutrality, although we are unable to test the hypothesis of interdemic selection among introductions from different native-range source populations. [source] Morphological variation in house mice from the Robertsonian polymorphism area of BarcelonaBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2009MARIA ASSUMPCIÓ SANS-FUENTES Morphometric variation in the Robertsonian polymorphism zone of Barcelona of Mus musculus domesticus was studied by geometric morphometrics. This system is characterized by populations of reduced diploid number (2n = 27,39) surrounded by standard populations (2n = 40). We investigated the morphological variation in mice from this area, as well as the effect of geographical distance and karyotype on this variation. We also investigated the degree of co-variation between the two functional units of the mandible to explore the origin of this system (primary intergradation or secondary contact). The size and shape of the cranium, mandible and scapula were analysed for 226 specimens grouped by population, chromosome number and structural heterozygosity. Size was estimated as the centroid size, and shape was estimated after Procrustes superimposition. No significant differences in size between populations or chromosomal groups were detected. Diploid number, structural heterozygosity and local geographical isolation contributed to the differentiation in shape. Morphological differentiation between standard mice and Robertsonian specimens was observed, suggesting genetic isolation between these groups. Co-variation between the ascending ramus and alveolar region of the mandible was quantified by the trace correlation between landmark subsets of these modules. The trace values showed an ascending trend, correlated with the distance from the centre of the polymorphism area, a pattern consistent with a primary intergradation scenario. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 555,570. [source] Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviourENVIRONMENTAL MICROBIOLOGY, Issue 10 2007Julien Tremblay Summary Pseudomonas aeruginosa presents three types of motilities: swimming, twitching and swarming. The latter is characterized by rapid and coordinated group movement over a semisolid surface resulting from morphological differentiation and intercellular interactions. A striking feature of P. aeruginosa swarming motility is the formation of migrating tendrils producing colonies with complex fractal-like patterns. Previous studies have shown that normal swarming motility is intimately related to the production of extracellular surface-active molecules: rhamnolipids (RLs), composed of monorhamnolipids (mono-RLs) and dirhamnolipids (di-RLs), and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs). Here, we report that (i) di-RLs attract active swarming cells while HAAs behave as strong repellents, (ii) di-RLs promote and HAAs inhibit tendril formation and migration, (iii) di-RLs and HAAs display different diffusion kinetics on a surface as di-RLs spread faster than HAAs in agar, (iv) di-RLs and HAAs have no effect on swimming cells, suggesting that swarming cells are different from swimming cells not only in morphology but also at the regulatory level and (v) mono-RLs act as wetting agents. We propose a model explaining how HAAs and di-RLs together modulate the behaviour of swarming migrating cells by acting as self-produced negative and positive chemotactic-like stimuli. [source] A bipotent neural progenitor cell line cloned from a cerebellum of an adult p53 -deficient mouse generates both neurons and oligodendrocytesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2005Mitsutoshi Tominaga Abstract Here we report developmental characteristics of a clonal cell line 2Y-3t established from a multifocal neoplasm that arose in a cerebellum of an adult p53 -deficient mouse. The tumorigenicity of the line was not observed in soft agar assay or in nude mouse assay. In serum-containing medium, 2Y-3t cells were epithelial-like in morphology and were mitotic. When they were cultured in serum-free medium, the expressions of neural stem and/or progenitor cell markers were decreased. Concomitantly, the expressions of neuronal and oligodendrocyte markers were increased in concert with morphological differentiation, and DNA synthesis ceased. None of astrocyte markers were detected under these culture conditions. Double-labelling studies revealed that two cell populations coexisted, expressing neuronal or oligodendrocyte markers. Triiodothyronine (T3) increased the oligodendrocyte population when 2Y-3t cells were cultured in serum-free medium. Recloning of the line gave rise to three types of subclones. Sixteen subclones were capable of generating both neurons and oligodendrocytes, four subclones were capable of generating only neurons and one subclone was capable of generating only oligodendrocytes. Thus, 2Y-3t cells have characteristics of bipotent neural progenitor cells capable of generating both neurons and oligodendrocytes. In addition, the line expressed mRNA for Pax-2 and had GAD67-positive cells when cultured in serum-free medium. However, none of the mRNAs for Zic-1, Math1, zebrin or Calbindin-D28k were detected, suggesting that the 2Y-3t line might generate the GABAergic interneuron lineage of the mouse cerebellum. [source] THE IMPORTANCE OF PREADAPTED GENOMES IN THE ORIGIN OF THE ANIMAL BODYPLANS AND THE CAMBRIAN EXPLOSIONEVOLUTION, Issue 5 2010Charles R. Marshall The genomes of taxa whose stem lineages branched early in metazoan history, and of allied protistan groups, provide a tantalizing outline of the morphological and genomic changes that accompanied the origin and early diversifications of animals. Genome comparisons show that the early clades increasingly contain genes that mediate development of complex features only seen in later metazoan branches. Peak additions of protein-coding regulatory genes occurred deep in the metazoan tree, evidently within stem groups of metazoans and eumetazoans. However, the bodyplans of these early-branching clades are relatively simple. The existence of major elements of the bilaterian developmental toolkit in these simpler organisms implies that these components evolved for functions other than the production of complex morphology, preadapting the genome for the morphological differentiation that occurred higher in metazoan phylogeny. Stem lineages of the bilaterian phyla apparently required few additional genes beyond their diploblastic ancestors. As disparate bodyplans appeared and diversified during the Cambrian explosion, increasing complexity was accommodated largely through changes in cis -regulatory networks, accompanied by some additional gene novelties. Subsequently, protein-coding genic richness appears to have essentially plateaued. Some genomic evidence suggests that similar stages of genomic evolution may have accompanied the rise of land plants. [source] SEXUAL SELECTION DRIVES RAPID DIVERGENCE IN BOWERBIRD DISPLAY TRAITSEVOLUTION, Issue 1 2000J. Albert C. Uy Abstract., Sexual selection driving display trait divergence has been suggested as a cause of rapid speciation, but there is limited supporting evidence for this from natural populations. Where speciation by sexual selection has occurred in newly diverged populations, we expect that there will be significant differences in female preferences and corresponding male display traits in the absence of substantial genetic and other morphological differentiation. Two allopatric populations of the Vogelkop bowerbird, Amblyornis inornatus, show large, qualitative differences in a suite of display traits including bower structure and decorations. We experimentally demonstrate distinct male decoration color preferences within each population, provide direct evidence of female preferences for divergent decoration and bower traits in the population with more elaborate display, and show that there is minimal genetic differentiation between these populations. These results support the speciation by sexual selection hypothesis and are most consistent with the hypothesis that changes in male display have been driven by divergent female choice. [source] Effects of juvenile hormone on 20-hydroxyecdysone-inducible EcR, HR3, E75 gene expression in imaginal wing cells of Plodia interpunctella lepidopteraFEBS JOURNAL, Issue 14 2004David Siaussat The IAL-PID2 cells derived from imaginal wing discs of the last larval instar of Plodia interpunctella were responsive to 20-hydroxyecdysone (20E). These imaginal cells respond to 20E by proliferative arrest followed by a morphological differentiation. These 20E-induced late responses were inhibited in presence of juvenile hormone (JH II). From these imaginal wing cells, we have cloned a cDNA sequence encoding a P. interpunctella ecdysone receptor-B1 isoform (PIEcR-B1). The amino acid sequence of PIEcR-B1 showed a high degree of identity with EcR-B1 isoforms of Bombyx mori, Manduca sexta and Choristoneura fumiferana. The pattern of PIEcR-B1mRNA induction by 20E was characterized by a biphasic response with peaks at 2 h and 18 h. The presence of the protein synthesis inhibitor anisomycin induced a slight reduction in level of PIEcR-B1 mRNA and prevented the subsequent declines observed in 20E-treated cells. Therefore, PIEcR-B1 mRNA was directly induced by 20E and its downregulation depended on protein synthesis. An exposure of imaginal wing cells to 20E in the presence of JH II caused an increased expression of Plodia E75-B and HR3 transcription factors but inhibited the second increase of PIEcR-B1 mRNA. These findings showed that in vitro JH II was able to prevent the 20E-induced differentiation of imaginal wing cells. This effect could result from a JH II action on the 20E-induced genetic cascade through a modulation of EcR-B1, E75-B and HR3 expression. [source] Activation and deactivation of periventricular white matter phagocytes during postnatal mouse developmentGLIA, Issue 1 2010Mariya Hristova Abstract Brain microglia are related to peripheral macrophages but undergo a highly specific process of regional maturation and differentiation inside the brain. Here, we examined this deactivation and morphological differentiation in cerebral cortex and periventricular subcortical white matter, the main "fountain of microglia" site, during postnatal mouse development, 0,28 days after birth (P0,P28). Only macrophages in subcortical white matter but not cortical microglia exhibited strong expression of typical activation markers alpha5, alpha6, alphaM, alphaX, and beta2 integrin subunits and B7.2 at any postnatal time point studied. White matter phagocyte activation was maximal at P0, decreased linearly over P3 and P7 and disappeared at P10. P7 white matter phagocytes also expressed high levels of IGF1 and MCSF, but not TNFalpha mRNA; this expression disappeared at P14. This process of deactivation followed the presence of ingested phagocytic material but correlated only moderately with ramification, and not with the extent of TUNEL+ death in neighboring cells, their ingestion or microglial proliferation. Intravenous fluosphere labeling revealed postnatal recruitment and transformation of circulating leukocytes into meningeal and perivascular macrophages as well as into ramified cortical microglia, but bypassing the white matter areas. In conclusion, this study describes strong and selective activation of postnatally resident phagocytes in the P0,P7 subcortical white matter, roughly equivalent to mid 3rd trimester human fetal development. This presence of highly active and IGF1- and MCSF-expressing phagocytes in the neighborhood of vulnerable white matter could play an important role in the genesis of or protection against axonal damage in the fetus and premature neonate. © 2009 Wiley-Liss, Inc. [source] Genetic and morphometric differentiation among island populations of two Norops lizards (Reptilia: Sauria: Polychrotidae) on independently colonized islands of the Islas de Bahia (Honduras)JOURNAL OF BIOGEOGRAPHY, Issue 7 2007C. F. C. Klütsch Abstract Aim, Anole lizards (Reptilia: Sauria: Polychrotidae) display remarkable morphological and genetic differentiation between island populations. Morphological differences between islands are probably due to both adaptive (e.g. differential resource exploitation and intra- or interspecific competition) and non-adaptive differentiation in allopatry. Anoles are well known for their extreme diversity and rapid adaptive speciation on islands. The main aim of this study was to use tests of morphological and genetic differentiation to investigate the population structure and colonization history of islands of the Islas de Bahia, off the coast of Honduras. Location, Five populations of Norops bicaorum and Norops lemurinus were sampled, four from islands of the Islas de Bahia and one from the mainland of Honduras. Methods, Body size and weight differentiation were measured in order to test for significant differences between sexes and populations. In addition, individuals were genotyped using the amplified fragment length polymorphism technique. Bayesian model-based and assignment/exclusion methods were used to study genetic differentiation between island and mainland populations and to test colonization hypotheses. Results, Assignment tests suggested migration from the mainland to the Cayos Cochinos, and from there independently to both Utila and Roatán, whereas migration between Utila and Roatán was lacking. Migration from the mainland to Utila was inferred, but was much less frequent. Morphologically, individuals from Utila appeared to be significantly different in comparison with all other localities. Significant differentiation between males of Roatán and the mainland was found in body size, whereas no significant difference was detected between the mainland and the Cayos Cochinos. Main conclusions, Significant genetic and morphological differentiation was found among populations. A stepping-stone model for colonization, in combination with an independent migration to Utila and Roatán, was suggested by assignment tests and was compatible with the observed morphological differentiation. [source] Mandibles and molars of the wood mouse, Apodemus sylvaticus (L.): integrated latitudinal pattern and mosaic insular evolutionJOURNAL OF BIOGEOGRAPHY, Issue 2 2007Sabrina Renaud Abstract Aim, The distinct nature of island populations has traditionally been attributed either to adaptation to particular insular conditions or to random genetic effects. In order to assess the relative importance of these two disparate processes, insular effects were addressed in the European wood mouse, Apodemus sylvaticus (Linnaeus, 1758). Location, Wood mice from 33 localities on both mainland and various Atlantic and western Mediterranean islands were considered. This sampling covers only part of the latitudinal range of A. sylvaticus but included the two main genetic clades identified by previous studies. Islands encompass a range of geographical conditions (e.g. small islands fringing the continent through large and isolated ones). Methods, The insular syndrome primarily invokes variations in body size, but ecological factors such as release from competition, niche widening and food availability should also influence other characters related to diet. In the present study, the morphology of the wood mice was quantified based on two characters involved in feeding: the size and shape of the mandibles and first upper molars. The size of the mandible is also a proxy for the body size of the animal. Patterns of morphological differentiation of both features were estimated using two-dimensional outline analysis based on Fourier methods. Results, Significant differences between mainland and island populations were observed in most cases for both the mandibles and molars. However, molars and mandibles displayed divergent patterns. Mandible shape diverged mostly on islands of intermediate remoteness and competition levels, whereas molars exhibited the greatest shape differentiation on small islands, such as Port-Cros and Porquerolles. A mosaic pattern was also displayed for size. Body and mandible size increased on Ibiza, but molar size remained similar to mainland populations. Mosaic patterns were, however, not apparent in the mainland populations. Congruent latitudinal variations were evident for the size and shape of both mandibles and molars. Main conclusions, Mosaic evolution appears to characterize insular divergence. The molar seems to be more prone to change with reduced population size on small islands, whereas the mandible could be more sensitive to peculiar environmental conditions on large and remote islands. [source] Independent evolution of migration on the South American landscape in a long-distance temperate-tropical migratory bird, Swainson's flycatcher (Myiarchus swainsoni)JOURNAL OF BIOGEOGRAPHY, Issue 6 2003Leo Joseph Abstract Aim, To understand the evolution of long-distance temperate,tropical migration in a South American bird, Swainson's flycatcher (Myiarchus swainsoni). Methods, A total of 842 base pairs of the mitochondrial DNA genes ATPase 8 and 6 were sequenced from forty-nine individuals of the M. swainsoni complex from most of its range. Analyses measured the phylogenetic signal in the data, and tools of population genetics, phylogeography and phylogeny were used to interpret the evolution of the bird and its migration on the South American landscape. Results, Migratory populations in the M. swainsoni complex are not each other's closest relatives. The migratory subspecies M. s. swainsoni, which breeds in south-eastern South America, is not closely related to the rest of the complex. The remaining migratory populations of the subspecies M. s. ferocior and two intergrade populations are extremely closely related to non-migratory populations with which they form a well-supported clade despite substantial morphological differentiation from each other. Within this clade of migrants and non-migrants, net divergence across 4000 km of lowland South America is zero and most diversity is distributed among individuals not populations. Mismatch analyses and significant values of Tajima's D and Fu's Fs suggest the clade has undergone a very recent range expansion. Migration and the shifts of breeding distribution that accompanied its evolution evolved twice within what has recently been considered the polytypic species M. swainsoni. Furthermore, these shifts of range probably occurred at very different times as parts of different southward ,pulses' of humid, Amazonian taxa. Main conclusions, Evolution of temperate-tropical migration in the M. swainsoni complex has been spatio-temporally layered on the South American landscape. The analysis cautions that the historical biogeography underlying a single present-day migration system need not have been driven by a single set of environmental factors operating at one time. We suggest directions for further study of ecology and demography in zones of apparent contact between various migratory and non-migratory populations. [source] Adaptive radiation in African weakly electric fish (Teleostei: Mormyridae: Campylomormyrus): a combined molecular and morphological approachJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2007P. G. D. FEULNER Abstract We combined multiple molecular markers and geometric morphometrics to revise the current taxonomy and to build a phylogenetic hypothesis for the African weakly electric fish genus Campylomormyrus. Genetic data (2039 bp DNA sequence of mitochondrial cytochrome b and nuclear S7 genes) on 106 specimens support the existence of at least six species occurring in sympatry. We were able to further confirm these species by microsatellite analysis at 16 unlinked nuclear loci and landmark-based morphometrics. We assigned them to nominal taxa by comparisons to type specimens of all Campylomormyrus species recognized so far. Additionally, we showed that the shape of the elongated trunk-like snout is the major source of morphological differentiation among them. This finding suggests that the radiation of this speciose genus might have been driven by adaptation to different food sources. [source] Patterns of speciation in endemic Mexican Goodeid fish: sexual conflict or early radiation?JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2005M. G. RITCHIE Abstract Currently there is much interest in the potential for sexual selection or conflict to drive speciation. Theory proposes that speciation will be accelerated where sexual conflict is strong, particularly if females are ahead because mate choice will accentuate divergence by limiting gene flow. The Goodeinae are a monophyletic group of endemic Mexican fishes with an origin at least as old as the Miocene. Sexual selection is important in the Goodeinae and there is substantial interspecific variability in body morphology, which influences mate choice, allowing inference of the importance of female mate choice. We therefore used this group to test the relationship between sexual dimorphism and speciation rate. We quantified interspecific variation in sexual dimorphism amongst 25 species using a multivariate measure of total morphological differentiation between the sexes that accurately reflects sexual dimorphism driven by female mate choice and also used a mtDNA-based phylogeny to examine speciation rates. Comparative analyses failed to support a significant association between sexual dimorphism and speciation rate. In addition, variation in the time course of speciation throughout the whole clade was also examined using a similar tree containing 34 extant species. A constant rates model for the growth of this clade was rejected, but analyses instead indicated a decline in the rate of speciation over time. These results support the hypothesis of an early expansion of the group, perhaps due to an early radiation influenced by the key innovation of live bearing, or the prevalence of Miocene volcanism. In general, support for the role of sexual selection in generating patterns of speciation is proving equivocal and we argue that vicariance biogeography and adaptive radiations remain the most likely determinants of major patterns of diversification of continental organisms. [source] Genetic and morphological differentiation in Tephritis bardanae (Diptera: Tephritidae): evidence for host-race formationJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2004T. Diegisser Abstract The fruit fly Tephritis bardanae infests flower heads of two burdock hosts, Arctium tomentosum and A. minus. Observations suggest host-associated mating and behavioural differences at oviposition indicating host-race status. Previously, flies from each host plant were found to differ slightly in allozyme allele frequencies, but these differences could as well be explained by geographical separation of host plants. In the present study, we explicitly test whether genetic and morphological variance among T. bardanae are explained best by host-plant association or by geographical location, and if this pattern is stable over a 10-year period. Populations of A. tomentosum flies differed significantly from those of A. minus flies in (i) allozyme allele frequencies at the loci Pep-A and Pgd, (ii) mtDNA haplotype frequencies and (iii) wing size. In contrast, geographical location had no significant influence on the variance estimates. While it remains uncertain whether morphometric differentiation reflects genotypic variability or phenotypic plasticity, allozyme and mtDNA differentiation is genetically determined. This provides strong evidence for host-race formation in T. bardanae. However, the levels of differentiation are relatively low indicating that the system is in an early stage of divergence. This might be due to a lack of time (i.e. the host shift occurred recently) or due to relatively high gene flow preventing much differentiation at loci not experiencing selection. [source] Long-Term Ethanol Exposure Impairs Neuronal Differentiation of Human Neuroblastoma Cells Involving Neurotrophin-Mediated Intracellular Signaling and in Particular Protein Kinase CALCOHOLISM, Issue 3 2009Julian Hellmann Background:, Revealing the molecular changes in chronic ethanol-impaired neuronal differentiation may be of great importance for understanding ethanol-related pathology in embryonic development but also in the adult brain. In this study, both acute and long-term effects of ethanol on neuronal differentiation of human neuroblastoma cells were investigated. We focused on several aspects of brain-derived neurotrophic factor (BDNF) signaling because BDNF activates the extracellular signal-regulated kinase (ERK) cascade, promoting neuronal differentiation including neurite outgrowth. Methods:, The effects of ethanol exposure on morphological differentiation, cellular density, neuronal marker proteins, basal ERK activity, and ERK responsiveness to BDNF were measured over 2 to 4 weeks. qRT-PCR and Western blotting were performed to investigate the expression of neurotrophin receptor tyrosin kinase B (TrkB), members of the ERK-cascade, protein kinase C (PKC) isoforms and Raf-Kinase-Inhibitor-Protein (RKIP). Results:, Chronic ethanol interfered with the development of a neuronal network consisting of cell clusters and neuritic bundles. Furthermore, neuronal and synaptic markers were reduced, indicating impaired neuronal differentiation. BDNF-mediated activation of the ERK cascade was found to be continuously impaired by ethanol. This could not be explained by expressional changes monitored for TrkB, Raf-1, MEK, and ERK. However, BDNF also activates PKC signaling which involves RKIP, which finally leads to ERK activation as well. Therefore, we hypothesized that ethanol impairs this branch of BDNF signaling. Indeed, both PKC and RKIP were significantly down-regulated. Conclusions:, Chronic ethanol exposure impaired neuronal differentiation of neuroblastoma cells and BDNF signaling, particularly the PKC-dependent branch. RKIP, acting as a signaling switch at the merge of the PKC cascade and the Raf/MEK/ERK cascade, was associated with neuronal differentiation and significantly reduced in ethanol treatment. Moreover, PKC expression itself was even more strongly reduced. In contrast, members of the Raf-1/MEK/ERK cascade were less affected and the observed changes were not associated with impaired differentiation. Thus, reduced RKIP and PKC levels and subsequently reduced positive feedback on ERK activation provide an explanation for the striking effects of long-term ethanol exposure on BDNF signal transduction and neuronal differentiation, respectively. [source] Geography of morphological differentiation in Asellus aquaticus (Crustacea: Isopoda: Asellidae)JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 2 2009S. Prevor Abstract We implemented a detailed morphometry and multivariate statistics to establish a general, large-scale racial differentiation in Asellus aquaticus (L.) sensu Racovitza. We ascertained that in surface populations a set of 11 morphometric characters might equivalently be represented by the pleopod respiratory area size alone. The analyses resulted in a distinct distribution pattern, with the large respiratory area populations disposed mainly along the Dinaric karst between southern Slovenia and western Macedonia and surrounded by the medium respiratory area morph, spatially irregularly substituted by the small area morph. This pattern is in contradiction with the distribution pattern of molecularly defined clades (as shown by Verovnik et al. 2005). We could find no ecological, hydrographical or paleogeographical explanations for such distribution pattern either. The only hypothetical explanation would be a preservation of the large respiratory area as a plesiomorphic character in the comparatively sheltered karst habitats, while throughout the easier accessible parts of the species range it was replaced by the ,modern' smaller area size. While a diminution of the respiratory area functionally means an increased sclerotization , hardening of pleopod IV,V exopodites, endopodites of pleopods III,V remain less sclerotized, probably respiratory and osmoregulatory functional. Zusammenfassung Die globale Rassendifferenzierung von Asellus aquaticus (L.) sensu Racovitza wurde anhand eingehender Morphometrie und multivariater Statistik untersucht. Es stellte sich heraus, dass der gesamte Satz von 11 morphometrischen Merkmalen allein durch das Merkmal ,Flächengröße der Pleopoden-Respirationsfläche' ersetzt werden kann. Die Analysen ergaben ein deutliches Muster, in dem Populationen mit großen Respirationsflächen überwiegend im Dinarischen Karst zwischen Süd-Slowenien und West-Makedonien verbreitet sind, von Morphen mit mittelgroßen Respirationsflächen umgeben werden, welche wiederum räumlich zerstreut von Morphen mit kleinen Respirationsflächen ersetzt werden. Dieses Muster widerspricht der Verbreitung von molekular-systematisch ermittelten Gruppen (Verovnik et al. 2005). Wir konnten keine ökologische, hydrographische oder paläogeographische Erklärung dafür finden. Die einzige hypothetische Erklärung könnte eine Erhaltung der großen Respirationsflächen als eines plesiomorphen Merkmals in vergleichsweise isolierten Karstgebieten sein, während sie in leichter besiedelbaren Gebieten von den ,modernen' kleineren Respirationsflächen ersetzt wurden. Es muss betont werden, dass eine Verkleinerung der Respirations-Area mit der Sklerotisierung der Exopoditen an den Pleopoden IV-V verbunden ist, während die Endopoditen der Pleopoden III-V ihre geringe Sklerotisierung beibehalten und somit wahrscheinlich atmungs- und osmoregulatorisch aktiv bleiben. [source] Ecomorphological analysis of the masticatory apparatus in the seed-eating bats, genus Chiroderma (Chiroptera: Phyllostomidae)JOURNAL OF ZOOLOGY, Issue 4 2005Marcelo R. Nogueira Abstract Recent data have shown that owing to their seed-predator capacity Chiroderma doriae and Chiroderma villosum trophically depart from all previously studied species within the canopy fruit-bat ensemble. In this paper, the hypothesis that morphological adaptations related to granivory have evolved in these bats is investigated and discussed. A canonical variate analysis was used to search for possible divergent trends between the masticatory apparatus of Chiroderma and other stenodermatines currently recognized in the same ensemble. A total of 142 specimens representative of eight species was included in the analysis. Species of Chiroderma can be discriminated from all other species in the sample based on the increased development of masseter-related variables (height of the anterior zygomatic arch, masseter moment arm, and masseter volume), which, in conjunction with other morphological characteristics (dentition and gape angle) discussed herein, corroborates the evolution of durophagy in this group. A complementary analysis based on a Mantel test revealed that the pattern of morphological differentiation that emerged from the canonical variate analysis does not agree with the one expected based solely on the phylogenetic relationships adopted for the canopy fruit-bats studied here. This result is consistent with the hypothesis that morphological adaptations related to granivory have evolved in Chiroderma. [source] Another diet of worms: the applicability of polychaete feeding guilds as a useful conceptual framework and biological variableMARINE ECOLOGY, Issue 3-4 2005Paulo Roberto Pagliosa Abstract A fundamental question in guild studies is how to separate species into guilds. In a seminal manuscript, Fauchald & Jumars [Oceanography and Marine Biology Annual Review17 (1979) 193] summarized polychaete feeding biology and proposed a conceptual framework to test hypotheses on the sympatric occurrence of congeners with limited morphological differentiation. Twenty-six years after this publication, few studies have tested the validity and practical functioning of this scheme of polychaete feeding guilds and then only using part of the classification. The objective of the present study was to analyze the applicability of polychaete feeding guilds to ecological and environment assessments. Two data sets from Santa Catarina Island Bay, southern Brazil, were used. The first data set deals with spatial distribution of natural polychaete assemblages along the bay. The second data set treats fauna in urbanized versus relatively pristine mangroves. Multivariate analysis showed similar patterns in sample groups formed using guilds or densities and composition data. The role of feeding guilds in benthic systems was assessed through comparison with environmental variables. The polychaete assemblage from the Bay was related to sediment type. Motile and discretely motile carnivores and herbivores with jawed probosces matched coarse sands; surface deposit feeders and filter feeders were found in fine sands; and surface and subsurface deposit feeders and carnivores, all with soft probosces matched silt and clay sediments. The data analyses in mangroves showed surface deposit feeders and filter feeders in undisturbed sites and omnivorous species in disturbed ones. The polychaete feeding guilds appear relevant to assembly rules based on resource availability, to resource partitioning and to interspecific competition. [source] Differential admixture shapes morphological variation among invasive populations of the lizard Anolis sagreiMOLECULAR ECOLOGY, Issue 8 2007JASON J. KOLBE Abstract The biological invasion of the lizard Anolis sagrei provides an opportunity to study evolutionary mechanisms that produce morphological differentiation among non-native populations. Because the A. sagrei invasion represents multiple native-range source populations, differential admixture as well as random genetic drift and natural selection, could shape morphological evolution during the invasion. Mitochondrial DNA (mtDNA) analyses reveal seven distinct native-range source populations for 10 introduced A. sagrei populations from Florida, Louisiana and Texas (USA), and Grand Cayman, with 2,5 native-range sources contributing to each non-native population. These introduced populations differ significantly in frequencies of haplotypes from different native-range sources and in body size, toepad-lamella number, and body shape. Variation among introduced populations for both lamella number and body shape is explained by differential admixture of various source populations; mean morphological values of introduced populations are correlated with the relative genetic contributions from different native-range source populations. The number of source populations contributing to an introduced population correlates with body size, which appears independent of the relative contributions of particular source populations. Thus, differential admixture of various native-range source populations explains morphological differences among introduced A. sagrei populations. Morphological differentiation among populations is compatible with the hypothesis of selective neutrality, although we are unable to test the hypothesis of interdemic selection among introductions from different native-range source populations. [source] Recolonization and radiation in Larix (Pinaceae): evidence from nuclear ribosomal DNA paraloguesMOLECULAR ECOLOGY, Issue 10 2004XIAO-XIN WEI Abstract Gene paralogy frequently causes the conflict between gene tree and species tree, but sometimes the coexistence of a few paralogous copies could provide more markers for tracing the phylogeographical process of some organisms. In the present study, nrDNA ITS paralogues were cloned from all but one species of Larix, an Eocene genus having two sections, Larix and Multiserialis, with a huge circumboreal distribution and an Eastern Asia,Western North America disjunction, respectively. A total of 96 distinct clones, excluding five putative pseudogenes or recombinants, were obtained and used in the gene genealogy analysis. The clones from all Eurasian species of section Larix are mixed together, suggesting that recolonization and recent morphological differentiation could have played important roles in the evolution of this section. In contrast, the species diversification of the Eurasian section Multiserialis may result from radiation in the east Himalayas and its vicinity, considering extensive nrDNA founder effects in this group. Our study also suggests that the distribution pattern analysis of members of multiple gene family would be very useful in tracking the evolutionary history of some taxa with recent origin or rapid radiation that cannot be resolved by other molecular markers. [source] amfR, an essential gene for aerial mycelium formation, is a member of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseusMOLECULAR MICROBIOLOGY, Issue 4 2003Haruka Yamazaki Summary In Streptomyces griseus, A-factor (2-isocapryloyl-3R -hydroxymethyl-,-butyrolactone) acts as a chemical signalling molecule that triggers morphological differentiation and secondary metabolism. A transcriptional activator, AdpA, in the A-factor regulatory cascade switches on a number of genes required for both processes, thus forming an AdpA regulon. amfR encoding a regulatory protein similar to response regulators of bacterial two-component regulatory systems and essential for aerial mycelium formation was found to be a member of the AdpA regulon. AdpA bound two sites at nucleotide positions approximately ,200 (site 1) and ,60 (site 2), with respect to the major transcriptional start point of amfR, and accelerated the transcription of amfR by assisting RNA polymerase in forming an open complex at an appropriate region including the transcriptional start point. Site 2 contributed more to the transcriptional activation of amfR by AdpA than site 1, although AdpA showed a much lower affinity to site 2 than to site 1. The amfR transcription enhanced by AdpA subsequently ceased at day 2 when aerial hyphae began to be formed in the wild-type strain, whereas in an adsA null mutant amfR was continuously transcribed even until day 3. This implied that amfR was repressed growth dependently by a gene product under the control of ,-AdsA. Transcription of the promoter upstream of amfT depended on amfR, which is consistent with the idea that AmfR serves as an activator for amfTSBA in the amf operon. The observations that the amfR gene contains a TTA codon, a potential target for bldA -mediated regulation, and a conserved Asp-54 residue, which might be phosphorylated by a sensor kinase, suggest that the amf operon is under transcriptional, translational and post-translational control systems. [source] Role of axon-deprived Schwann cells in perineurial regeneration in the rat sciatic nerveNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 3 2000M. Popovi The role of Schwann cells (SC) in perineurial regeneration after nerve injury has not yet been resolved. It was hypothesized that SC alone are able to induce at least partial morphological restoration of the destroyed orthotopic perineureum (PN). To test the hypothesis, a permanently denervated segment of the rat sciatic nerve was made acellular by freeze-thawing, except in its most proximal part where non-neuronal cells were left intact. Restoration of the frozen segment by these cells was examined by electron microscopy and immunohistochemistry of the SC marker, S-100 protein, 4 and 8 weeks after injury. The PN regenerated from undifferentiated fibroblast-like cells. In the presence of migrant SC without axons, regenerated cells in the place of the former PN were stacked in several layers and, in accordance with the hypothesis, partially expressed typical features of the perineurial cells (PC): pinocytotic vesicles, short fragments of basal lamina and tight junctions. Migrant SC induced formation of pseudo-minifascicles even in the epineurium. In these, SC organized the adjacent fibroblasts into a multilayered circular sheath, and induced their partial differentiation towards perineurial cells. Further experiments demonstrated that regenerating axons are required for complete morphological differentiation of the regenerated perineurial cells either in the orthotopic PN or in minifascicles. [source] Growth rate constrain morphological divergence when driven by competitionOIKOS, Issue 1 2006Jens Olsson Resource competition has been hypothesized to be important in driving divergence by natural selection. The effect of competition on morphological divergence and plasticity has however rarely been investigated. Since low growth rates might constrain morphological modulation and individual growth rates usually are negatively related to the intensity of competition, there might be a connection between competition, growth rate and morphological divergence. We performed an aquarium experiment with young-of-the-year Eurasian perch (Perca fluviatilis L.) to investigate how individual growth rate affected morphological plasticity induced by contrasting habitat treatments. Furthermore, in a field study of 10 lakes we also related the degree of morphological differentiation between habitats to the intraspecific competitior biomass. In the aquarium experiment we found that morphological plasticity was growth rate dependent in that morphological differentiation between the habitat treatments was confined to high individual growth rates. In the field study we found that morphological differentiation between habitats decreased with increasing intraspecific competitior biomass. Since plasticity is hypothesized to be important in divergence and intraspecific biomass could serve as a proxy for the level of competition, we suggest that our results indicate that morphological divergence might be constrained during periods of intense intraspecific competition due to low growth rates. A possible scenario is that at low growth rates all energy available is used for metabolic maintenance and no surplus energy is therefore available for morphological modulation. [source] A comparative analysis of internal cranial anatomy in the hylobatidaeAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2010Erin Rae Leslie Abstract Craniometric studies on the hylobatids using external metrics (Creel and Preuschoft, 1976, 1984) sorted hylobatid populations into primary species groupings which are in accordance with the four currently recognized generic-level groupings. The goal of the current study was to assess the relative orientations of the orbits, palate, and basioccipital clivus among the hylobatid genera in an effort to further clarify whether the lesser apes differ significantly in these internal cranial features and how that variation patterns across the groups. Nine angular variables quantifying orbital, palatal, and basioccipital clivus orientations were measured on lateral view radiographs of adults representing three of the four hylobatid genera: Hylobates; Nomascus; and, Symphalangus. The interspecific adult hylobatid means for the angular variables were analyzed using t -test contrasts. The total sample was further subjected to discriminant function analysis (DFA) to test for the ability of craniofacial angular variables to distinguish the hylobatid genera from one another. The three hylobatid genera displayed significant morphological differentiation in orbital, palatal, and posterior skull base orientations. Normal, jackknifed, and cross-validation DFA procedures correctly identified the hylobatids 50,100% of the time. The observed morphological patterns generally mapped onto the findings of earlier external craniometric hylobatid studies and suggest concordance between specific internal and external cranial features. This article is the first comprehensive study of variation in internal cranial anatomy of the Hylobatidae and includes the first published craniofacial angular data for Nomascus. Am J Phys Anthropol 143:250,265, 2010. © 2010 Wiley-Liss, Inc. [source] Cholinergic switch associated with morphological differentiation in neuroblastoma,THE JOURNAL OF PATHOLOGY, Issue 4 2009Franck Bourdeaut Abstract The morphology of malignant cells distinguishes between undifferentiated, poorly differentiated and differentiating neuroblastomas and constitutes a strong prognostic factor. Spontaneous or treatment-induced maturation characterizes a subset of neuroblastomas. It constitutes the basis of retinoic acid treatment to improve survival in aggressive neuroblastomas. However, the molecular events that drive differentiation are poorly understood. In the present study we have investigated the relationships between gene expression profiles and differentiation criteria in stroma-poor neuroblastomas. This study included three undifferentiated (UN), 20 poorly differentiated (PDN) and 11 differentiating (DN) neuroblastomas. These groups could be clearly separated using unsupervised clustering methods, which further enabled a major classification impact of genes involved in neural development, differentiation and function to be identified. UNs are characterized by high ASCL1, high PHOX2B, low GATA2, low TH and low DBH expressions. Most PDNs harbour a clear adrenergic phenotype, even in the presence of missense PHOX2B mutations. Finally, all DN tumours demonstrate cholinergic features. Depending upon their association with adrenergic characteristics, this enables dual ,cholinergic/adrenergic' and ,fully cholinergic' neuroblastomas to be defined. This suggests that the cholinergic switch, a final specification process that occurs physiologically in a minority of sympathetic neurons, is a critical step of differentiation in some neuroblastic tumours. This switch is associated with a down regulation of DBH that is apparently not strictly dependent upon PHOX2B. Conversely, GATA2 and TFAP2B may play critical roles in maintaining adrenergic features in poorly differentiated tumours. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] Intraspecific genome size variation and morphological differentiation of Ranunculus parnassifolius (Ranunculaceae), an Alpine,Pyrenean,Cantabrian polyploid groupBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2010EDUARDO CIRES The aim of this study was to assess genome size variation and multivariate morphometric analyses to ascertain cytotype distribution patterns and the morphological differentiation within the Ranunculus parnassifolius group in the Pyrenees and the Alps. Although divergences in nuclear DNA content among different species within a genus are widely acknowledged, intraspecific variation is still a somewhat controversial issue. Holoploid and monoploid genome sizes (C- and Cx-values) were determined using propidium iodide flow cytometry in 125 plants of R. parnassifolius s.l. distributed across four European countries. Three different DNA ploidy levels were revealed in the study area: diploid (2n , 2x, 57.14%), triploid (2n , 3x, 1.19%), and tetraploid (2n , 4x, 41.67%). The mean population 2C-values ranged from 8.15 pg in diploids to 14.80 pg in tetraploids, representing a ratio of 1 : 1.8. Marked intraspecific/interpopulation differences in nuclear DNA content were found. Diploid populations prevail in the Pyrenees, although tetraploid cytotypes were reported throughout the distribution area. In general, mixed-cytotype populations were not found. The Spearman correlation coefficient did not reveal significant correlations between genome size and altitude, longitude, or latitude. Morphometric analyses and cluster analyses based on genome size variation revealed the presence of three major groups, which exhibited a particular biogeographical pattern. A new cytotype, DNA triploid, was found for the first time. Tetraploid populations showed constant nuclear DNA levels, whereas diploid populations from the Pyrenees, in which introgressive hybridization is suggested as a presumable trigger for genome size variation, did not. Scenarios for the evolution of geographical parthenogenesis in R. parnassifolius s.l. are discussed. Finally, the different levels of effectiveness between plant and animal reference standards are analysed. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 251,271. [source] Genetic and morphological divergence reveals local subdivision of perch (Perca fluviatilis L.)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009SARA BERGEK The level of gene flow is an important factor influencing genetic differentiation between populations. Typically, geographic distance is considered to be the major factor limiting dispersal and should thus only influence the degree of genetic divergence at larger spatial scales. However, recent studies have revealed the possibility for small-scale genetic differentiation, suggesting that the spatial scale considered is pivotal for finding patterns of isolation by distance. To address this question, genetic and morphological differentiation were studied at two spatial scales (range 2,13 km and range 300 m to 2 km) in the perch (Perca fluviatilis L.) from the east coast archipelago of Sweden, using seven microsatellite loci and geometric morphometrics. We found highly significant genetic differentiation between sampled locations at both scales. At the larger spatial scale, the distance per se was not affecting the level of divergence. At the small scale, however, we found subtle patterns of isolation by distance. In addition, we also found morphological divergence between locations, congruent with a spatial separation at a microgeographic scale, most likely due to phenotypic plasticity. The present study highlights the importance of geographical scale and indicates that there might be a disparity between the dispersal capacity of a species and the actual movement of genes. Thus, how we view the environment and possible barriers to dispersal might have great implications for our ability to fully understand the evolution of genetic differentiation, local adaptation, and, in the end, speciation. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96, 746,758. [source] Molecular and morphological data reveal cryptic taxonomic diversity in the terrestrial slug complex Arion subfuscus/fuscus (Mollusca, Pulmonata, Arionidae) in continental north-west EuropeBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2004J. PINCEEL The importance and abundance of cryptic species among invertebrate taxa is well documented. Nowadays, taxonomic, phylogenetic and conservation biological studies frequently use molecular markers to delineate cryptic taxa. Such studies, however, often face the problem of the differential resolution of the molecular markers and techniques involved. This issue is explored in the present study of cryptic taxa within the terrestrial slug complex Arion subfuscus/fuscus in continental north-west Europe. To this end, morphological, allozyme and mitochondrial 16S rDNA sequence data have been jointly evaluated. Using allozyme data and gonad type, two distinct groups were consistently delineated, even under sympatric conditions. The 16S rDNA data strongly supported both those groups and even suggested the presence of three distinct taxa within one of them. However, in view of: (1) the allopatric distribution of three OTUs, (2) the lack of allozyme or morphological differentiation, and (3) the extremely high degree of intraspecific mtDNA variation reported in pulmonate gastropods, they are, for the time being, not regarded as valid species under the biological species concept. By means of 16S rDNA and allozyme data, the position of type and topotype material of A. subfuscus s.s. and A. fuscus relative to the newly defined OTUs was determined, thus clarifying the nomenclature of this species complex. Additionally, gonad type proved to be a useful character for distinguishing the two species in north-west Europe. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83, 23,38. [source] |