Home About us Contact | |||
Monomers Used (monomer + used)
Selected AbstractsIn-vitro release and oral bioactivity of insulin in diabetic rats using nanocapsules dispersed in biocompatible microemulsionJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2002Suchat Watnasirichaikul This study evaluated the potential of poly(iso -butyl cyanoacrylate) (PBCA) nanocapsules dispersed in a biocompatible microemulsion to facilitate the absorption of insulin following intragastric administration to diabetic rats. Insulin-loaded PBCA nanocapsules were prepared in-situ in a biocompatible water-in-oil microemulsion by interfacial polymerisation. The microemulsion consisted of a mixture of medium-chain mono-, di- and tri-glycerides as the oil component, polysorbate 80 and sorbitan mono-oleate as surfactants and an aqueous solution of insulin. Resulting nanocapsules were approximately 200 nm in diameter and demonstrated a high efficiency of insulin entrapment (> 80%). In-vitro release studies showed that PBCA nanocapsules could suppress insulin release in acidic media and that release at near neutral conditions could be manipulated by varying the amount of monomer used for polymerisation. Subcutaneous administration of insulin-loaded nanocapsules to diabetic rats demonstrated that the bioactivity of insulin was largely retained following this method of preparing peptide-loaded nanocapsules and that the pharmacodynamic response was dependent on the amount of monomer used for polymerisation. The intragastric administration of insulin-loaded nanocapsules dispersed in the biocompatible microemulsion resulted in a significantly greater reduction in blood glucose levels of diabetic rats than an aqueous insulin solution or insulin formulated in the same microemulsion. This study demonstrates that the formulation of peptides within PBCA nanocapsules that are administered dispersed in a microemulsion can facilitate the oral absorption of encapsulated peptide. Such a system can be prepared in-situ by the interfacial polymerisation of a water-in-oil biocompatible microemulsion. [source] Photografting of acrylic acid and methacrylic acid onto polyolefines initiated by formaldehyde in aqueous solutionsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2009Jianmei Han Abstract Formaldehyde aqueous solution can act as an effective photoinitiating system for water-borne photografting. The photografting of acrylic acid (AA) and methacrylic acid (MAA) onto high-density polyethylene (HDPE), low-density polyethylene (LDPE) and polypropylene (PP) initiated by formaldehyde aqueous solutions has been reported. The effects of formaldehyde content and monomer concentration on grafting varied with the polymeric substrates and monomers used. For the grafting of AA onto HDPE, the extent of grafting increased with increasing formaldehyde content in the solution, monomer concentration had a little effect on grafting. Whereas for the grafting of MAA onto HDPE, the grafting performed in 8% formaldehyde aqueous solution lead to the highest extent of grafting, the extent of grafting increased with monomer concentration till 2.5 mol/L. MAA was easier to be grafted onto the polyolefins than AA. The easiness of grafting occurring on the polyolefins was in a decreasing order of LDPE > HDPE > PP. Qualitative and semi-quantitative Fourier transform infrared (FTIR) characterizations of the grafted samples were performed. For both grafted LDPE and PP samples, at the same irradiation time, the carbonyl index of the samples grafted with MAA was higher than that grafted with AA. The FTIR results are in accord with the results obtained by gravimetric method. The water absorbency of the grafted samples increased almost linearly with the extent of grafting. The PE films grafted with AA adsorbed more water than those grafted with MAA. This study had broadened the water-borne initiating system for photografting. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Sorption kinetics of ethanol/water solution by dimethacrylate-based dental resins and resin compositesJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2007Irini D. Sideridou Abstract In the present investigation the sorption,desorption kinetics of 75 vol % ethanol/water solution by dimethacrylate-based dental resins and resin composites was studied in detail. The resins examined were made by light-curing of bisphenol A glycol dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), bisphenol A ethoxylated dimethacrylate (Bis-EMA), and mixtures of these monomers. The resin composites were prepared from two commercial light-cured restorative materials (Z100 MP and Filtek Z250), the resin matrix of which is based on copolymers of the above-mentioned monomers. Ethanol/water sorption/desorption was examined in both equilibrium and dynamic conditions in two adjacent sorption,desorption cycles. For all the materials studied, it was found that the amount of ethanol/water sorbed or desorbed was always larger than the corresponding one reported in literature in case of water immersion. It was also observed that the chemical structure of the monomers used for the preparation of the resins directly affects the amount of solvent sorbed or desorbed, as well as sorption kinetics, while desorption rate was nearly unaffected. In the case of composites studied, it seems that the sorption/desorption process is not influenced much by the presence of filler. Furthermore, diffusion coefficients calculated for the resins were larger than those of the composites and were always higher during desorption than during sorption. Finally, an interesting finding concerning the rate of ethanol/water sorption was that all resins and composites followed Fickian diffusion kinetics during almost the whole sorption curve; however, during desorption the experimental data were overestimated by the theoretical model. Instead, it was found that a dual diffusion,relaxation model was able to accurately predict experimental data during the whole desorption curve. Kinetic relaxation parameters, together with diffusion coefficients, are reported for all resins and composites. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source] PVC modification through polymerization of a monomer absorbed in porous suspension-type PVC particlesJOURNAL OF VINYL & ADDITIVE TECHNOLOGY, Issue 3 2004M. Narkis In-situ polymerization is the polymerization of one monomer in the presence of another polymer. It can be performed by sequential emulsion polymerization, or by reactions in the melt, in the solid phase, or in solution. The current report describes two methods to obtain poly(vinyl chloride) (PVC) modification through polymerization of a monomer absorbed in commercial porous suspension-type PVC particles. The generated modified PVC products differ significantly in their structure and properties. The first approach includes absorption of a monomer/peroxide solution within porous suspension-type PVC particles, followed by polymerization/crosslinking in the solid state at 80°C in an aqueous stabilizer-free dispersion. The monomer/crosslinker pairs selected are styrene/DVB (divinyl benzene), methylmethacrylate/EGDMA (ethylene glycol dimethacrylate), butyl acrylate/EGDMA, and ethylhexyl acrylate/EGDMA. The influence of composition and nature of the polymerizing/crosslinking constituents on the modified PVC particle structure was studied by microscopy methods, porosity measurements, and dynamic mechanical behavior (DMTA). The level of molecular grafting between PVC and the modifying polymer was determined by solvent extraction experiments. This work shows that the different monomers used represent distinct courses of monomer transport through the PVC particles. The characteristics of the modified PVC particle indicate that the polymerization/crosslinking process occurs in both the PVC bulk, i.e., within the walls constituting a particle, and in the PVC pores. No indication of chemical intermolecular interaction within the modified PVC particles was found. In the second approach, a solution of monomer, initiator, and a crosslinking agent is absorbed in commercial suspension-type porous PVC particles, thus forming a dry blend. This dry blend is subsequently reactively polymerized in a twin-screw extruder at an elevated temperature, 180°C, in the molten state. The properties of the reactively extruded PVC/PMMA blends are compared with those of physical blends at similar compositions. Owing to the high polymerization temperature, short-chain polymers are formed in the reactive polymerization process. Reactively extruded PVC/PMMA blends are transparent, form single-phase morphology, have a single Tg, and show mechanical properties comparable with those of the neat PVC. The resulting reactively extruded PVC/PMMA blends have high compatibility. J. Vinyl Addit. Technol. 10:109,120, 2004. © 2004 Society of Plastics Engineers. [source] |