Model Version (model + version)

Distribution by Scientific Domains


Selected Abstracts


Combined statistical and dynamical assessment of simulated vegetation,rainfall interactions in North Africa during the mid-Holocene,

GLOBAL CHANGE BIOLOGY, Issue 2 2008
MICHAEL NOTARO
Abstract A negative feedback of vegetation cover on subsequent annual precipitation is simulated for the mid-Holocene over North Africa using a fully coupled general circulation model with dynamic vegetation, FOAM-LPJ (Fast Ocean Atmosphere Model-Lund Potsdam Jena Model). By computing a vegetation feedback parameter based on lagged auto-covariances, the simulated impact of North African vegetation on precipitation is statistically quantified. The feedback is also dynamically assessed through initial value ensemble experiments, in which North African grass cover is initially reduced and the climatic response analyzed. The statistical and dynamical assessments of the negative vegetation feedback agree in sign and relative magnitude for FOAM-LPJ. The negative feedback on annual precipitation largely results from a competition between bare soil evaporation and plant transpiration, with increases in the former outweighing reductions in the latter given reduced grass cover. This negative feedback weakens and eventually reverses sign over time during a transient simulation from the mid-Holocene to present. A similar, but weaker, negative feedback is identified in Community Climate System Model Version 2 (CCSM2) over North Africa for the mid-Holocene. [source]


Impact of twenty-first century climate change on diadromous fish spread over Europe, North Africa and the Middle East

GLOBAL CHANGE BIOLOGY, Issue 5 2009
G. LASSALLE
Abstract Climate change is expected to drive species ranges towards the poles and to have a strong influence on species distributions. In this study, we focused on diadromous species that are of economical and ecological importance in the whole of Europe. We investigated the potential distribution of all diadromous fish regularly encountered in Europe, North Africa and the Middle East (28 species) under conditions predicted for twenty-first century climate change. To do so, we investigated the 1900 distribution of each species in 196 basins spread across all of Europe, North Africa and the Middle East. Four levels were used to semiquantitatively describe the abundance of species, that is missing, rare, common and abundant. We then selected five variables describing the prevailing climate in the basins, the physical nature of the basins and reflecting historical events known to have affected freshwater fish distribution. Logistic regressions with a four-level ordinal response variable were used to develop species-specific models. These predictive models related the observed distribution of these species in 1900 to the most explanatory combination of variables. Finally, we selected the A2 SRES scenario and the HadCM3 (Hadley Centre Coupled Model version 3) global climate model (GCM) to obtain climate variables (temperature and precipitation) at the end of this century. We used these 2100 variables in our models and obtained maps of climatically suitable and unsuitable basins, percentages of contraction or expansion for each species. Twenty-two models were successfully built, that is there were five species for which no model could be established because their distribution range was too narrow and the Acipenser sturio model failed during calibration. All the models selected temperature or/and precipitation as explanatory variables. Responses to climate change were species-specific but could be classified into three categories: little or no change in the distribution (five species), expansion of the distribution range (three species gaining suitable basins mainly northward) and contraction of the distribution (14 species losing suitable basins). Shifting ranges were in accordance with those found in other studies and underlined the high sensitivity of diadromous fish to modifications in their environment. [source]


Assessment of the severe weather environment in North America simulated by a global climate model

ATMOSPHERIC SCIENCE LETTERS, Issue 4 2007
Patrick T. Marsh
Abstract Annual and seasonal cycles of convectively important atmospheric parameters for North America have been computed using the Community Climate System Model version 3 (CCSM3) Global Climate Model using a decade of CCSM3 data. Results for the spatial and temporal distributions of environments conducive to severe convective weather qualitatively agree with observational estimates from NCAR/NCEP global reanalyses, although the model underestimates the frequency of occurrence of severe weather environments. This result demonstrates the possibility for future studies aimed at determining possible changes in the distribution of severe weather environments associated with global climate change. Copyright © 2007 Royal Meteorological Society [source]


Chronic copper toxicity in the estuarine copepod Acartia tonsa at different salinities

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2010
Mariana M. Lauer
Abstract Chronic Cu toxicity was evaluated in the euryhaline copepod Acartia tonsa. Male and female copepods were exposed (6 d) separately to different combinations of Cu concentration and water salinity (5, 15, and 30 ppt) using different routes of exposure (waterborne, waterborne plus dietborne, and dietborne). After exposure, groups of one male and three female copepods were allowed to reproduce for 24,h. In control copepods, egg production augmented with increasing water salinity. However, egg hatching rate did not change. Copper exposure reduced egg production and hatching rate in all water salinities tested, but the reproductive response was dependent on the route of Cu exposure. Median effective concentration (EC50) values for egg production after waterborne exposure were 9.9, 36.8, and 48.8,µg/L dissolved Cu at water salinities of 5, 15, and 30 ppt, respectively. For waterborne plus dietborne exposure, they were significantly higher (40.1, 63.7, and 109.9,µg /L, respectively). After dietborne exposure, approximately 40% decrease in egg production was observed, independently of Cu concentration and water salinity tested. At water salinities of 5 and 30 ppt, egg hatching rate reduced after waterborne exposure, together or not with the dietborne exposure. At water salinity of 15 ppt, Cu toxicity was only observed after dietborne exposure. Data indicate that egg production is a more reliable reproductive endpoint to measure chronic Cu toxicity in copepods than egg hatching rate in a wide range of water salinities. They also suggest that both water salinity and route of Cu exposure should be taken into account in the development of a chronic biotic ligand model version for estuarine and marine environments. Environ. Toxicol. Chem. 2010;29:2297,2303. © 2010 SETAC [source]


Canadian RCM projected climate-change signal and its sensitivity to model errors

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 15 2006
L. Sushama
Abstract Climate change is commonly evaluated as the difference between simulated climates under future and current forcings, based on the assumption that systematic errors in the current-climate simulation do not affect the climate-change signal. In this paper, we investigate the Canadian Regional Climate Model (CRCM) projected climate changes in the climatological means and extremes of selected basin-scale surface fields and its sensitivity to model errors for Fraser, Mackenzie, Yukon, Nelson, Churchill and Mississippi basins, covering the major climate regions in North America, using current (1961,1990) and future climate simulations (2041,2070; A2 and IS92a scenarios) performed with two versions of CRCM. Assessment of errors in both model versions suggests the presence of nonnegligible biases in the surface fields, due primarily to the internal dynamics and physics of the regional model and to the errors in the driving data at the boundaries. In general, results demonstrate that, in spite of the errors in the two model versions, the simulated climate-change signals associated with the long-term monthly climatology of various surface water balance components (such as precipitation, evaporation, snow water equivalent (SWE), runoff and soil moisture) are consistent in sign, but differ in magnitude. The same is found for projected changes to the low-flow characteristics (frequency, timing and return levels) studied here. High-flow characteristics, particularly the seasonal distribution and return levels, appear to be more sensitive to the model version. CRCM climate-change projections indicate an increase in the average annual precipitation for all basins except Mississippi, while annual runoff increases in Fraser, Mackenzie and Yukon basins. A decrease in runoff is projected for Mississippi. A significant decrease in snow cover is projected for all basins, with maximum decrease in Fraser. Significant changes are also noted in the frequency, timing and return levels for low flows. Copyright © 2006 Royal Meteorological Society. [source]


A mass-conservative version of the semi-implicit semi-Lagrangian HIRLAM

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 635 2008
P. H. Lauritzen
Abstract A mass-conservative version of the semi-implicit semi-Lagrangian High-Resolution Limited-Area Model (HIRLAM) is presented. The explicit continuity equation is solved with the so-called cell-integrated semi-Lagrangian (CISL) method. To allow for long time steps, the CISL scheme is coupled with a recently developed semi-implicit time-stepping scheme that involves the same non-complicated elliptic equation as in HIRLAM. Contrarily to the traditional semi-Lagrangian method, the trajectories are backward in the horizontal and forward in the vertical, i.e. cells moving with the flow depart from model layers and arrive in a regular column, and their vertical displacements are computed from continuity of mass and hydrostatic balance in the arrival column. This involves just two-dimensional upstream integrals and allows for a Lagrangian discretization of the energy conversion term in the thermodynamic equation. Preliminary validation of the new model version is performed using an idealized baroclinic wave test case. The accuracy of the new formulation of HIRLAM is comparable to the reference version though it is slightly more diffusive. A main finding is that the new discretization of the energy conversion term leads to more accurate simulations compared to the traditional ,Eulerian' treatment. Copyright © 2008 Royal Meteorological Society [source]


The role of the basic state in the ENSO,monsoon relationship and implications for predictability

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 607 2005
A. G. Turner
Abstract The impact of systematic model errors on a coupled simulation of the Asian summer monsoon and its interannual variability is studied. Although the mean monsoon climate is reasonably well captured, systematic errors in the equatorial Pacific mean that the monsoon,ENSO teleconnection is rather poorly represented in the general-circulation model. A system of ocean-surface heat flux adjustments is implemented in the tropical Pacific and Indian Oceans in order to reduce the systematic biases. In this version of the general-circulation model, the monsoon,ENSO teleconnection is better simulated, particularly the lag,lead relationships in which weak monsoons precede the peak of El Niño. In part this is related to changes in the characteristics of El Niño, which has a more realistic evolution in its developing phase. A stronger ENSO amplitude in the new model version also feeds back to further strengthen the teleconnection. These results have important implications for the use of coupled models for seasonal prediction of systems such as the monsoon, and suggest that some form of flux correction may have significant benefits where model systematic error compromises important teleconnections and modes of interannual variability. Copyright © 2005 Royal Meteorological Society [source]


A destructuration theory and its application to SANICLAY model

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 10 2010
Mahdi Taiebat
Abstract Many natural clays have an undisturbed shear strength in excess of the remoulded strength. Destructuration modeling provides a means to account for such sensitivity in a constitutive model. This paper extends the SANICLAY model to include destructuration. Two distinct types of destructuration are considered: isotropic and frictional. The former is a concept already presented in relation to other models and in essence constitutes a mechanism of isotropic softening of the yield surface with destructuration. The latter refers to the reduction of the critical stress ratio reflecting the effect of destructuration on the friction angle, and is believed to be a novel proposition. Both the types depend on a measure of destructuration rate expressed in terms of combined plastic volumetric and deviatoric strain rates. The SANICLAY model itself is generalized from its previous form by additional dependence of the yield surface on the third isotropic stress invariant. Such a generalization allows to obtain as particular cases simplified model versions of lower complexity including one with a single surface and associative flow rule, by simply setting accordingly parameters of the generalized version. A detailed calibration procedure of the relatively few model constants is presented, and the performance of three versions of the model, in descending order of complexity, is validated by comparison of simulations to various data for oedometric consolidation followed by triaxial undrained compression and extension tests on two structured clays. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Canadian RCM projected climate-change signal and its sensitivity to model errors

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 15 2006
L. Sushama
Abstract Climate change is commonly evaluated as the difference between simulated climates under future and current forcings, based on the assumption that systematic errors in the current-climate simulation do not affect the climate-change signal. In this paper, we investigate the Canadian Regional Climate Model (CRCM) projected climate changes in the climatological means and extremes of selected basin-scale surface fields and its sensitivity to model errors for Fraser, Mackenzie, Yukon, Nelson, Churchill and Mississippi basins, covering the major climate regions in North America, using current (1961,1990) and future climate simulations (2041,2070; A2 and IS92a scenarios) performed with two versions of CRCM. Assessment of errors in both model versions suggests the presence of nonnegligible biases in the surface fields, due primarily to the internal dynamics and physics of the regional model and to the errors in the driving data at the boundaries. In general, results demonstrate that, in spite of the errors in the two model versions, the simulated climate-change signals associated with the long-term monthly climatology of various surface water balance components (such as precipitation, evaporation, snow water equivalent (SWE), runoff and soil moisture) are consistent in sign, but differ in magnitude. The same is found for projected changes to the low-flow characteristics (frequency, timing and return levels) studied here. High-flow characteristics, particularly the seasonal distribution and return levels, appear to be more sensitive to the model version. CRCM climate-change projections indicate an increase in the average annual precipitation for all basins except Mississippi, while annual runoff increases in Fraser, Mackenzie and Yukon basins. A decrease in runoff is projected for Mississippi. A significant decrease in snow cover is projected for all basins, with maximum decrease in Fraser. Significant changes are also noted in the frequency, timing and return levels for low flows. Copyright © 2006 Royal Meteorological Society. [source]