Home About us Contact | |||
Model Scenarios (model + scenario)
Selected AbstractsFour-dimensional variational assimilation in the unstable subspace and the optimal subspace dimensionTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 647 2010Anna Trevisan Abstract Key apriori information used in 4D-Var is the knowledge of the system's evolution equations. In this article we propose a method for taking full advantage of the knowledge of the system's dynamical instabilities in order to improve the quality of the analysis. We present an algorithm for four-dimensional variational assimilation in the unstable subspace (4D-Var , AUS), which consists of confining in this subspace the increment of the control variable. The existence of an optimal subspace dimension for this confinement is hypothesized. Theoretical arguments in favour of the present approach are supported by numerical experiments in a simple perfect nonlinear model scenario. It is found that the RMS analysis error is a function of the dimension N of the subspace where the analysis is confined and is a minimum for N approximately equal to the dimension of the unstable and neutral manifold. For all assimilation windows, from 1 to 5 d, 4D-Var , AUS performs better than standard 4D-Var. In the presence of observational noise, the 4D-Var solution, while being closer to the observations, is farther away from the truth. The implementation of 4D-Var , AUS does not require the adjoint integration. Copyright © 2010 Royal Meteorological Society [source] Effects of climate on occurrence and size of large fires in a northern hardwood landscape: historical trends, forecasts, and implications for climate change in Témiscamingue, QuébecAPPLIED VEGETATION SCIENCE, Issue 3 2009C. Ronnie Drever Abstract Questions: What climate variables best explain fire occurrence and area burned in the Great Lakes-St Lawrence forest of Canada? How will climate change influence these climate variables and thereby affect the occurrence of fire and area burned in a deciduous forest landscape in Témiscamingue, Québec, Canada? Location: West central Québec and the Great Lakes-St Lawrence forest of Canada. Methods: We first used an information-theoretic framework to evaluate the relative role of different weather variables in explaining occurrence and area burned of large fires (>200 ha, 1959-1999) across the Great Lakes-St Lawrence forest region. Second, we examined how these weather variables varied historically in Témiscamingue and, third, how they may change between the present and 2100 according to different scenarios of climate change based on two Global Circulation Models. Results: Mean monthly temperature maxima during the fire season (Apr-Oct) and weighted sequences of dry spells best explained fire occurrence and area burned. Between 1910 and 2004, mean monthly temperature maxima in Témiscamingue showed no apparent temporal trend, while dry spell sequences decreased in frequency and length. All future scenarios show an increase in mean monthly temperature maxima, and one model scenario forecasts an increase in dry spell sequences, resulting in a slight increase in forecasted annual area burned. Conclusion: Despite the forecasted increase in fire activity, effects of climate change on fire will not likely affect forest structure and composition as much as natural succession or harvesting and other disturbances, principally because of the large relative difference in area affected by these processes. [source] Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland.ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2010Part II: Micropollutant removal between wastewater, raw drinking water Abstract The occurrence and removal of 58 pharmaceuticals, endocrine disruptors, corrosion inhibitors, biocides, and pesticides, were assessed in the wastewater treatment plant (WWTP) of the city of Lausanne, Switzerland, as well as in the effluent-receiving water body, the Vidy Bay of Lake Geneva. An analytical screening method to simultaneously measure all of the 58 micropollutants was developed based on ultra performance liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). The selection of pharmaceuticals was primarily based on a prioritization study, which designated them as environmentally relevant for the Lake Geneva region. Except for the endocrine disruptor 17,-ethinylestradiol, all substances were detected in 24-h composite samples of wastewater entering the WWTP or in the treated effluent. Of these compounds, 40% were also detected in raw drinking water, pumped from the lake 3,km downstream of the WWTP. The contributions of dilution and degradation to micropollutant elimination between the WWTP outlet and the raw drinking water intake were established in different model scenarios using hypothetical residence times of the wastewater in Vidy Bay of 1, 4, or 90 d. Concentration decrease due to processes other than dilution was observed for diclofenac, beta-blockers, several antibiotics, corrosion inhibitors, and pesticides. Measured environmental concentrations (MECs) of pharmaceuticals were compared to the predicted environmental concentrations (PECs) determined in the prioritization study and agreed within one order of magnitude, but MECs were typically greater than the corresponding PECs. Predicted no-effect concentrations of the analgesic paracetamol, and the two antibiotics ciprofloxacin and sulfamethoxazole, were exceeded in raw drinking water samples and therefore present a potential risk to the ecosystem. Environ. Toxicol. Chem. 2010; 29:1658,1668. © 2010 SETAC [source] DNAPL Characterization Methods and Approaches, Part 2: Cost ComparisonsGROUND WATER MONITORING & REMEDIATION, Issue 1 2002Mark L. Kram Contamination from the use of chlorinated solvents, often classified as dense nonaqueous phase liquids (DNAPLs) when in an undissolved state, pose environmental threats to ground water resources worldwide. DNAPL site characterization method performance comparisons are presented in a companion paper (Kram et al. 2001). This study compares the costs for implementing various characterization approaches using synthetic unit model scenarios (UMSs), each with particular physical characteristics. Unit costs and assumptions related to labor, equipment, and consumables are applied to determine costs associated with each approach for various UMSs. In general, the direct-push sensor systems provide cost-effective characterization information in soils that are penetrable with relatively shallow (less than 10 to 15 m) water tables. For sites with impenetrable lithology using direct-push techniques, the Ribbon NAPL Sampler Flexible Liner Underground Technologies Everting (FLUTe) membrane appears to be the most cost-effective approach. For all scenarios studied, partitioning interwell tracer tests (PITTs) are the most expensive approach due to the extensive pre-and post-PITT requirements. However, the PITT is capable of providing useful additional information, such as approximate DNAPL saturation, which is not generally available from any of the other approaches included in this comparison. [source] CLIMATE CHHANGE SENSITIVITY ASSESSMENT ON UPPER MISSISSIPPI RIVER BASIN STREAMFLOWS USING SWAT,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2006Manoj Jha ABSTRACT: The Soil and Water Assessment Tool (SWAT) model was used to assess the effects of potential future climate change on the hydrology of the Upper Mississippi River Basin (UMRB). Calibration and validation of SWAT were performed using monthly stream flows for 1968,1987 and 1988,1997, respectively. The R2 and Nash-Sutcliffe simulation efficiency values computed for the monthly comparisons were 0.74 and 0.69 for the calibration period and 0.82 and 0.81 for the validation period. The effects of nine 30-year (1968 to 1997) sensitivity runs and six climate change scenarios were then analyzed, relative to a scenario baseline. A doubling of atmospheric CO2 to 660 ppmv (while holding other climate variables constant) resulted in a 36 percent increase in average annual streamflow while average annual flow changes of ,49, ,26, 28, and 58 percent were predicted for precipitation change scenarios of ,20, ,10, 10, and 20 percent, respectively. Mean annual streamflow changes of 51,10, 2, ,6, 38, and 27 percent were predicted by SWAT in response to climate change projections generated from the CISRO-RegCM2, CCC, CCSR, CISRO-Mk2, GFDL, and HadCMS general circulation model scenarios. High seasonal variability was also predicted within individual climate change scenarios and large variability was indicated between scenarios within specific months. Overall, the climate change scenarios reveal a large degree of uncertainty in current climate change forecasts for the region. The results also indicate that the simulated UMRB hydrology is very sensitive to current forecasted future climate changes. [source] |