Model Materials (model + material)

Distribution by Scientific Domains


Selected Abstracts


Crack initiation in the brittle fracture of ferritic steels

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 9-10 2006
M. COATES
ABSTRACT Fracture in many steels is thought to initiate from fractured carbides. It is often supposed that in pre-cracked specimens, many carbides fracture in the plastic zone of the pre-crack, and that eventually fracture propagates from one of these to cause fracture of the whole specimen. Sources of fracture initiation in steels were investigated using a modified A533B steel as a model material. Specimens were annealed to produce a distribution of micron-sized carbides in a ferrite matrix. Four-point bend tests were carried out in the temperature range 77,373K to determine the material's ductile brittle transition. Pre-cracked samples were loaded up to 90% of the fracture strength at temperatures on the lower shelf (163K) and at the mid point of the transition region (243K). The samples were then sectioned and polished to produce SEM and TEM samples containing the crack tip. Other samples were made of areas some distance from the crack tip and out of the plastic zone. An extensive search for fracture initiation sites found no evidence for fracture initiation originating from fractured carbides. [source]


Experimental Evidence for Grain-Boundary Sliding in Ultrafine-Grained Aluminum Processed by Severe Plastic Deformation,

ADVANCED MATERIALS, Issue 1 2006
Q. Chinh
Evidence for grain boundary sliding in ultrafine-grained aluminum after processing with equal channel angular pressing (ECAP) is presented (see Figure). Pure aluminum is used as a model material; depth sensing indentation testing and atomic force microscopy are used to measure the nature of the displacements around indentations for samples in an annealed and work-hardened condition, and after processing using ECAP. [source]


Progress in the Study of Molecular Genetic Improvements of Poplar in China

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 9 2006
Shan-Zhi Lin
Abstract The poplar is one of the most economically important and intensively studied tree species owing to its wide application in the timber industry and as a model material for the study of woody plants. The natural resource of poplars in China is replete. Over the past 10 years, the application of molecular biological techniques to genetic improvements in poplar species has been widely studied in China. Recent advances in molecular genetic improvements of poplar, including cDNA library construction, gene cloning and identification, genetic engineering, gene expression, genetic linkage map construction, mapping of quantitative trait loci (QTL) and molecular-assisted selection, are reviewed in the present paper. In addition, the application of modern biotechnology to molecular improvements in the genetic traits of the poplar and some unsolved problems are discussed. (Managing editor: Li-Hui Zhao) [source]


Integrated Microwave and Optical Scanning Probe for Magnetic Resonance Imaging

ISRAEL JOURNAL OF CHEMISTRY, Issue 1 2008
Fadi Sakran
We demonstrate a scanning microwave near-field probe based on a slit aperture that is capable of performing spatially-resolved magnetic resonance measurements in the frequency range of 3,90 GHz. We demonstrate local electron spin resonance (ESR), ferromagnetic resonance (FMR), and spin-wave resonance (SWR) studies on model materials. The probe can serve as a local contactless heater as well. We demonstrate also a further application, a dual microwave/optical near-field probe that can be useful in contactless measurements of photoconductivity and fluorescence under microwave irradiation. [source]


Spherical ordered mesoporous silicas and silica monoliths as stationary phases for liquid chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 6 2006
Anne Galarneau
Abstract Ordered mesoporous silicas such as micelle-templated silicas (MTS) feature unique textural properties in addition to their high surface area (,1000 m2/g): narrow mesopore size distributions and controlled pore connectivity. These characteristics are highly relevant to chromatographic applications for resistance to mass transfer, which has never been studied in chromatography because of the absence of model materials such as MTS. Their synthesis is based on unique self-assembly processes between surfactants and silica. In order to take advantage of the perfectly adjustable texture of MTS in chromatographic applications, their particle morphology has to be tailored at the micrometer scale. We developed a synthesis strategy to control the particle morphology of MTS using the concept of pseudomorphic transformation. Pseudomorphism was recognized in the mineral world to gain a mineral that presents a morphology not related to its crystallographic symmetry group. Pseudomorphic transformations have been applied to amorphous spherical silica particles usually used in chromatography as stationary phases to produce MTS with the same morphology, using alkaline solution to dissolve progressively and locally silica and reprecipitate it around surfactant micelles into ordered MTS structures. Spherical beads of MTS with hexagonal and cubic symmetries have been synthesized and successfully used in HPLC in fast separation processes. MTS with a highly connected structure (cubic symmetry), uniform pores with a diameter larger than 6 nm in the form of particles of 5 ,m could compete with monolithic silica columns. Monolithic columns are receiving strong interest and represent a milestone in the area of fast separation. Their synthesis is a sol-gel process based on phase separation between silica and water, which is assisted by the presence of polymers. The control of the synthesis of monolithic silica has been systematically explored. Because of unresolved yet cladding problems to evaluate the resulting macromonoliths in HPLC, micromonoliths were synthesized into fused-silica capillaries and evaluated by nano-LC and CEC. Only CEC allows to gain high column efficiencies in fast separation processes. Capillary silica monolithic columns represent attractive alternatives for miniaturization processes (lab-on-a chip) using CEC. [source]


The small-angle and wide-angle X-ray scattering set-up at beamline BL9 of DELTA

JOURNAL OF SYNCHROTRON RADIATION, Issue 3 2007
Christina Krywka
The multi-purpose experimental endstation of beamline BL9 at the Dortmund Electron Accelerator (DELTA) is dedicated to diffraction experiments in grazing-incidence geometry, reflectivity and powder diffraction measurements. Moreover, fluorescence analysis and inelastic X-ray scattering experiments can be performed. Recently, a new set-up for small-angle and wide-angle X-ray scattering utilizing detection by means of an image-plate scanner was installed and is described in detail here. First small-angle X-ray scattering experiments on aqueous solutions of lysozyme with different cosolvents and of staphylococcal nuclease are discussed. The application of the set-up for texture analysis is emphasized and a study of the crystallographic texture of natural bio-nanocomposites, using lobster and crab cuticles as model materials, is presented. [source]


Comparison of Methods to Determine the Fracture Toughness of Three Glass-Ceramics at Elevated Temperatures

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2000
Janet B. Quinn
Two standardized methods for measuring kIc in ceramics are compared for use at high temperatures (precracked beam and surface crack in flexure). Results from a third technique involving the measurement of cracks around Vickers indentations are also presented. Three dental glass-ceramics, differing primarily in microstructure, were used as model materials in this study. They emphasized the importance of microstructure in determining high-temperature kIc values and the challenges in measuring them. The measured fracture toughnesses decreased with temperature and increased with imbedded grain size for all three methods. [source]