Model Antigen (model + antigen)

Distribution by Scientific Domains


Selected Abstracts


Spatiotemporal Control over Molecular Delivery and Cellular Encapsulation from Electropolymerized Micro- and Nanopatterned Surfaces,

ADVANCED FUNCTIONAL MATERIALS, Issue 18 2009
Eric Stern
Abstract Bioactive, patterned micro- and nanoscale surfaces that can be spatially engineered for three-dimensional ligand presentation and sustained release of signaling molecules represent a critical advance for the development of next-generation diagnostic and therapeutic devices. Lithography is ideally suited to patterning such surfaces due to its precise, easily scalable, high-throughput nature; however, to date polymers patterned by these techniques have not demonstrated the capacity for sustained release of bioactive agents. Here a class of lithographically defined, electropolymerized polymers with monodisperse micro- and nanopatterned features capable of sustained release of bioactive drugs and proteins is demonstrated. It is shown that precise control can be achieved over the loading capacity and release rates of encapsulated agents and this aspect is illustrated using a fabricated surface releasing a model antigen (ovalbumin) and a cytokine (interleukin-2) for induction of a specific immune response. Furthermore, the ability of this technique to enable three-dimensional control over cellular encapsulation is demonstrated. The efficacy of the described approach is buttressed by its simplicity, versatility, and reproducibility, rendering it ideally suited for biomaterials engineering. [source]


Interferon regulatory factor-1 acts as a powerful adjuvant in tat DNA based vaccination,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2010
Arianna Castaldello
Genetic vaccines are safe cost-effective approaches to immunization but DNA immunization is an inefficient process. There is, therefore, a pressing need for adjuvants capable of enhancing the immunogenicity and effectiveness of these vaccines. This is particularly important for diseases for which successful vaccines are still lacking, such as cancer and infectious diseases including HIV-1/AIDS. Here we report an approach to enhance the immunogenicity of DNA vaccines involving the use of transcription factors of the Interferon regulatory factor (IRF) family, specifically IRF-1, IRF-3, and IRF-7 using the tat gene as model antigen. Balb/c mice were immunized by three intramuscular inoculations, using a DNA prime-protein boost protocol, with a DNA encoding tat of HIV-1 and the indicated IRFs and immune responses were compared to those induced by vaccination with tat DNA alone. In vivo administration of plasmid DNA encoding IRF-1, or a mutated version of IRF-1 deleted of the DNA-binding domain, enhanced Tat-specific immune responses and shifted them towards a predominant T helper 1-type immune response with increased IFN-, production and cytotoxic T lymphocytes responses. Conversely, the use of IRF-3 or IRF-7 did not affect the tat -induced responses. These findings define IRF-1 and its mutated form as efficacious T helper 1-inducing adjuvants in the context of tat- based vaccination and also providing a new promising candidate for genetic vaccine development. J. Cell. Physiol. 224: 702,709, 2010. © 2010 Wiley-Liss, Inc. [source]


Signaling defects in anti-tumor T cells

IMMUNOLOGICAL REVIEWS, Issue 1 2008
Alan B. Frey
Summary: The immune response to cancer has been long recognized, including both innate and adaptive responses, showing that the immune system can recognize protein products of genetic and epigenetic changes in transformed cells. The accumulation of antigen-specific T cells within the tumor, the draining lymph node, and the circulation, either in newly diagnosed patients or resultant from experimental immunotherapy, proves that tumors produce antigens and that priming occurs. Unfortunately, just as obviously, tumors grow, implying that anti-tumor immune responses are either not sufficiently vigorous to eliminate the cancer or that anti-tumor immunity is suppressed. Both possibilities are supported by current data. In experimental animal models of cancer and also in patients, systemic immunity is usually not dramatically suppressed, because tumor-bearing animals and patients develop T-cell-dependent immune responses to microbes and to either model antigens or experimental cancer vaccines. However, inhibition of specific anti-tumor immunity is common, and several possible explanations of tolerance to tumor antigens or tumor-induced immunesuppression have been proposed. Inhibition of effective anti-tumor immunity results from the tumor or the host response to tumor growth, inhibiting the activation, differentiation, or function of anti-tumor immune cells. As a consequence, anti-tumor T cells cannot respond productively to developmental, targeting, or activation cues. While able to enhance the number and phenotype of anti-tumor T cells, the modest success of immunotherapy has shown the necessity to attempt to reverse tolerance in anti-tumor T cells, and the vanguard of experimental therapy now focuses on vaccination in combination with blockade of immunosuppressive mechanisms. This review discusses several potential mechanisms by which anti-tumor T cells may be inhibited in function. [source]


CD40-mediated enhancement of immune responses against three forms of influenza vaccine

IMMUNOLOGY, Issue 1 2007
Caterina Hatzifoti
Summary There is potential for influenza A infections to cause massive morbidity and mortality. Vaccination may be the primary defence against pandemic influenza, and potential pandemic'flu vaccines may be produced conventionally, in embryonated eggs, or as recombinant protein or synthetic peptide vaccines. However the vaccines are produced, the supply may be limiting, and it will be important to enhance the immunogenicity of the vaccines as much as possible. We have shown that conjugation to CD40 binding antibody is a very efficient way of enhancing immune responses against model antigens, but were interested in assessing the effectiveness of this system using influenza vaccines. We produced conjugates of CD40 monoclonal antibody (mAb) and isotype control with three potential influenza vaccines: a peptide-based vaccine containing T- and B-cell epitopes from virus haemagglutinin; a whole, killed virus vaccine; and a commercially produced split virus vaccine. CD40 mAb conjugates in each case were more immunogenic, but the adjuvant effect of CD40 conjugation was greatest with the split vaccine, where antibody responses were enhanced by several hundred-fold after a single immunization, and lymphocyte proliferation in response to antigen in vitro was also strongly enhanced. [source]