Mobility Group Box Chromosomal Protein (mobility + group_box_chromosomal_protein)

Distribution by Scientific Domains

Kinds of Mobility Group Box Chromosomal Protein

  • high mobility group box chromosomal protein


  • Selected Abstracts


    The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis

    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 8 2006
    M. VAN DE WOUWER
    Summary.,Background: Thrombomodulin (TM) is predominantly a vascular endothelial cell plasma membrane glycoprotein that, via distinct structural domains, interacts with multiple ligands, thereby modulating coagulation, fibrinolysis, complement activation, inflammation and cell proliferation. We previously reported that by mediating signals that interfere with mitogen-activated protein kinase and nuclear factor ,B pathways, the amino-terminal C-type lectin-like domain of TM has direct anti-inflammatory properties. Methods: In the current study, we use murine models of acute inflammatory arthritis and biochemical approaches to assess the mechanism by which the lectin-like domain of TM modifies disease progression. Results: Mice lacking the lectin-like domain of TM (TMLeD/LeDmice) develop inflammatory arthritis that is more rapid in onset and more severe than that developed in their wildtype counterparts. In two models of arthritis, treatment of mice with recombinant soluble lectin-like domain of TM significantly suppresses clinical evidence of disease and diminishes monocyte/macrophage infiltration into the synovium, with weaker expression of the pro-inflammatory high mobility group box chromosomal protein 1. While thrombin-TM mediated activation of thrombin activatable fibrinolysis inhibitor inactivates complement factors C3a and C5a, we show that TM has a second independent mechanism to regulate complement: the lectin-like domain of TM directly interferes with complement activation via the classical and lectin pathways. Conclusions: These data extend previous insights into the mechanisms by which TM modulates innate immunity, and highlight its potential as a therapeutic target for inflammatory diseases. [source]


    Protective targeting of high mobility group box chromosomal protein 1 in a spontaneous arthritis model

    ARTHRITIS & RHEUMATISM, Issue 10 2010
    Therese Östberg
    Objective High mobility group box chromosomal protein 1 (HMGB-1) is a DNA binding nuclear protein that can be released from dying cells and activated myeloid cells. Extracellularly, HMGB-1 promotes inflammation. Clinical and experimental studies demonstrate that HMGB-1 is a pathogenic factor in chronic arthritis. Mice with combined gene deficiency for DNase II and IFNRI spontaneously develop chronic, destructive polyarthritis with many features shared with rheumatoid arthritis. DNase II is needed for macrophage degradation of engulfed DNA. The aim of this study was to evaluate a potential pathogenic role of HMGB-1 in this novel murine model. Methods The course of arthritis, assessed by clinical scoring and histology, was studied in DNase II,/, × IFNRI,/, mice, in comparison with heterozygous and wild-type mice. Synovial HMGB-1 expression was analyzed by immunohistochemistry. Serum levels of HMGB-1 were determined by Western immunoblotting and enzyme-linked immunosorbent assay (ELISA), and anti,HMGB-1 autoantibodies were detected by ELISA. Macrophage activation was studied by immunostaining for intracellular interleukin-1, and HMGB-1. HMGB-1 was targeted with truncated HMGB-1,derived BoxA protein, acting as a competitive antagonist, with intraperitoneal injections every second day for 5 weeks. Results DNase II,/, × IFNRI,/, mice developed symmetric polyarthritis with strong aberrant cytosolic and extracellular HMGB-1 expression in synovial tissue, in contrast to that observed in control animals. Increased serum levels of HMGB-1 and HMGB-1 autoantibodies were recorded in DNase II,/, × IFNRI,/, mice, both prior to and during the establishment of disease. Systemic HMGB-1,specific blockade significantly ameliorated the clinical disease course, and a protective effect on joint destruction was demonstrated by histologic evaluation. Conclusion HMGB-1 is involved in the pathogenesis of this spontaneous polyarthritis, and intervention with an HMGB-1 antagonist can mediate beneficial effects. [source]


    Chondrocyte innate immune myeloid differentiation factor 88,dependent signaling drives procatabolic effects of the endogenous toll-like receptor 2/toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice

    ARTHRITIS & RHEUMATISM, Issue 7 2010
    Ru Liu-Bryan
    Objective Toll-like receptor 2 (TLR-2)/TLR-4,mediated innate immunity serves as a frontline antimicrobial host defense, but also modulates tissue remodeling and repair responses to endogenous ligands released during low-grade inflammation. We undertook the present study to assess whether the endogenous TLR-2/TLR-4 ligands low molecular weight hyaluronan (LMW-HA) and high mobility group box chromosomal protein 1 (HMGB-1), which are increased in osteoarthritic (OA) joints, drive procatabolic chondrocyte responses dependent on TLR-2 and TLR-4 signaling through the cytosolic adaptor myeloid differentiation factor 88 (MyD88). Methods We studied mature femoral head cap cartilage explants and immature primary knee articular chondrocytes from TLR-2/TLR-4,double-knockout, MyD88-knockout, and congenic wild-type mice. Generation of nitric oxide (NO), degradation of hyaluronan, release of HMGB-1, matrix metalloproteinase 3 (MMP-3), and MMP-13, and protein expression of type X collagen were assessed by Griess reaction and Western blotting analyses. Expression of messenger RNA for type II and type X collagen, MMP-13, and RUNX-2 was examined by real-time quantitative reverse transcription,polymerase chain reaction. Results Interleukin-1, and TLR-2 and TLR-4 ligands induced both HMGB-1 release from chondrocytes and extracellular LMW-HA generation in normal chondrocytes. TLR-2/TLR-4,/, and MyD88,/, mouse cartilage explants and chondrocytes lost the capacity to mount procatabolic responses to both LMW-HA and HMGB-1, demonstrated by >95% suppression of NO production (P < 0.01), and attenuated induction of MMP-3 and MMP-13. Combined deficiency of TLR-2/TLR-4, or of MyD88 alone, also attenuated release of NO and blunted induction of MMP-3 and MMP-13 release. MyD88 was necessary for HMGB-1 and hyaluronidase 2 (which generates LMW-HA) to induce chondrocyte hypertrophy, which is implicated in OA progression. Conclusion MyD88-dependent TLR-2/TLR-4 signaling is essential for procatabolic responses to LMW-HA and HMGB-1, and MyD88 drives chondrocyte hypertrophy. Therefore, LMW-HA and HMGB-1 act as innate immune cytokine-like signals with the potential to modulate chondrocyte differentiation and function in OA progression. [source]


    High mobility group box chromosomal protein 1: A novel proinflammatory mediator in synovitis

    ARTHRITIS & RHEUMATISM, Issue 10 2002
    R. Kokkola
    Objective High mobility group box chromosomal protein 1 (HMGB-1) is a ubiquitous chromatin component expressed in nucleated mammalian cells. It has recently and unexpectedly been demonstrated that stimulated live mononuclear phagocytes secrete HMGB-1, which then acts as a potent factor that causes inflammation and protease activation. Macrophages play pivotal roles in the pathogenesis of arthritis. The aim of this study was to determine whether synovial macrophage expression of HMGB-1 is altered in human and experimental synovitis. Methods Intraarticular tissue specimens were obtained from healthy Lewis rats, Lewis rats with Mycobacterium tuberculosis,induced adjuvant arthritis, and from patients with rheumatoid arthritis (RA). Specimens were immunohistochemically stained for cellular HMGB-1. Extracellular HMGB-1 levels were assessed in synovial fluid samples from RA patients by Western blotting. Results Immunostaining of specimens from normal rats showed that HMGB-1 was primarily confined to the nucleus of synoviocytes and chondrocytes, with occasional cytoplasmic staining and no extracellular matrix deposition. In contrast, inflammatory synovial tissue from rats with experimental arthritis as well as from humans with RA showed a distinctly different HMGB-1 staining pattern. Nuclear HMGB-1 expression was accompanied by a cytoplasmic staining in many mononuclear cells, with a macrophage-like appearance and an extracellular matrix deposition. Analysis of synovial fluid samples from RA patients further confirmed the extracellular presence of HMGB-1; 14 of 15 samples had HMGB-1 concentrations of 1.8,10.4 ,g/ml. Conclusion The proinflammatory mediator HMGB-1 was abundantly expressed as a nuclear, cytoplasmic, and extracellular component in synovial tissues from RA patients and from rats with experimental arthritis. These findings suggest a pathogenetic role for HMGB-1 in synovitis and indicate a new potential therapeutic target molecule. [source]