Mouse Hippocampus (mouse + hippocampus)

Distribution by Scientific Domains

Kinds of Mouse Hippocampus

  • adult mouse hippocampus


  • Selected Abstracts


    Fast Effects of Glucocorticoids on Memory-Related Network Oscillations in the Mouse Hippocampus

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2008
    E. K. Weiss
    Transient or lasting increases in glucocorticoids accompany deficits in hippocampus-dependent memory formation. Recent data indicate that the formation and consolidation of declarative and spatial memory are mechanistically related to different patterns of hippocampal network oscillations. These include gamma oscillations during memory acquisition and the faster ripple oscillations (approximately 200 Hz) during subsequent memory consolidation. We therefore analysed the effects of acutely applied glucocorticoids on network activity in mouse hippocampal slices. Evoked field population spikes and paired-pulse responses were largely unaltered by corticosterone or cortisol, respectively, despite a slight increase in maximal population spike amplitude by 10 ,m corticosterone. Several characteristics of sharp waves and superimposed ripple oscillations were affected by glucocorticoids, most prominently the frequency of spontaneously occurring sharp waves. At 0.1 ,m, corticosterone increased this frequency, whereas maximal (10 ,m) concentrations led to a reduction. In addition, gamma oscillations became slightly faster and less regular in the presence of high doses of corticosteroids. The present study describes acute effects of glucocorticoids on sharp wave-ripple complexes and gamma oscillations in mouse hippocampal slices, revealing a potential background for memory deficits in the presence of elevated levels of these hormones. [source]


    Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets

    DEVELOPMENTAL NEUROBIOLOGY, Issue 5 2007
    Alexander Dityatev
    Abstract Extracellular matrix molecules,including chondroitin sulfate proteoglycans, hyaluronan, and tenascin-R,are enriched in perineuronal nets (PNs) associated with subsets of neurons in the brain and spinal cord. In the present study, we show that similar cell type-dependent extracellular matrix aggregates are formed in dissociated cell cultures prepared from early postnatal mouse hippocampus. Starting from the 5th day in culture, accumulations of lattice-like extracellular structures labeled with Wisteria floribunda agglutinin were detected at the cell surface of parvalbumin-expressing interneurons, which developed after 2,3 weeks into conspicuous PNs localized around synaptic contacts at somata and proximal dendrites, as well as around axon initial segments. Physiological recording and intracellular labeling of PN-expressing neurons revealed that these are large fast-spiking interneurons with morphological characteristics of basket cells. To study mechanisms of activity-dependent formation of PNs, we performed pharmacological analysis and found that blockade of action potentials, transmitter release, Ca2+ permeable AMPA subtype of glutamate receptors or L-type Ca2+ voltage-gated channels strongly decreased the extracellular accumulation of PN components in cultured neurons. Thus, we suggest that Ca2+ influx via AMPA receptors and L-type channels is necessary for activity-dependent formation of PNs. To study functions of chondroitin sulfate-rich PNs, we treated cultures with chondroitinase ABC that resulted in a prominent reduction of several major PN components. Removal of PNs did not affect the number and distribution of perisomatic GABAergic contacts but increased the excitability of interneurons in cultures, implicating the extracellular matrix of PNs in regulation of interneuronal activity. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source]


    Mass spectrometrical analysis of the mitochondrial carrier Aralar1 from mouse hippocampus

    ELECTROPHORESIS, Issue 11 2010
    Seok Heo
    Abstract Aralar1 is a mitochondrial aspartate/glutamate carrier and a key component of the malate,aspartate NADH shuttle system. An analytical approach to obtain high sequence coverage is important to predict conformation, identify splice variants and binding partners or generate specific antibodies. Moreover, a method allowing determination of Aralar1 from brain samples is a prerequisite for evaluating a biological role. Sucrose gradient ultracentrifugation was applied to enrich native membrane protein fractions and these were run on blue-native PAGE, followed by multidimensional gel electrophoresis. Spots from the third-dimensional gel electrophoresis were in-gel digested with trypsin, chymotrypsin and subtilisin. Subsequently, peptides were analyzed by nano-ESI-LC-MS/MS using collision-induced dissociation and electron transfer dissociation modes. ModiroÔ v1.1 along with Mascot v2.2 software was used for data handling. Aralar1 could be clearly separated, unambiguously identified and characterized from protein extracts of mouse hippocampus by the use of the multidimensional gel electrophoretic steps. The combined sequence coverage of Aralar1 from trypsin, chymotrypsin and subtilisin digestions was 99.85%. The results provide the basis for future studies of Aralar1 at the protein chemical rather than at the immunochemical level in the brain and thus challenge and enable determination of Aralar1 levels required for understanding biological functions in health and disease. [source]


    An integrated map of the murine hippocampal proteome based upon five mouse strains

    ELECTROPHORESIS, Issue 13 2006
    Daniela D. Pollak
    Abstract With the advent of proteomics technologies it is possible to simultaneously demonstrate the expression of hundreds of proteins. The information offered by proteomics provides context-based understanding of cellular protein networks and has been proven to be a valuable approach in neuroscience studies. The mouse hippocampus has been a major target of analysis in the search for molecular correlates to neuronal information storage. Although human and rat hippocampal samples have been successfully subjected to proteomic profiling, no elaborate analysis providing the fundamental experimental basis for protein-expression studies in the mouse hippocampus has been carried out as yet. This led us to construct a master map generated from the individual hippocampal proteomes of five different mouse strains. A proteomic approach, based upon 2-DE coupled to MS (MALDI-TOF/TOF) has been chosen in an attempt to establish a comprehensive reference database of proteins expressed in the mouse hippocampus. 469 individual proteins, represented by 1156 spots displaying various functional states of the respective gene products were identified. Proteomic profiling of the hippocampus, a brain region with a pivotal role for neuronal information processing and storage may provide insight into the characteristics of proteins serving this highly sophisticated function. [source]


    Immunolocalization of BK channels in hippocampal pyramidal neurons

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2006
    Claudia A. Sailer
    Abstract Neurons are highly specialized cells in which the integration and processing of electrical signals critically depends on the precise localization of ion channels. For large-conductance Ca2+ - activated K+ (BK) channels, targeting to presynaptic membranes in hippocampal pyramidal cells was reported; however, functional evidence also suggests a somatodendritic localization. Therefore we re-examined the subcellular distribution of BK channels in mouse hippocampus using a panel of independent antibodies in a combined approach of conventional immunocytochemistry on cultured neurons, pre- and postembedding electron microscopy and immunoprecipitation. In cultured murine hippocampal neurons, the colocalization of BK channels with both pre- and postsynaptic marker proteins was observed. Electron microscopy confirmed targeting of BK channels to axonal as well as dendritic membranes of glutamatergic synapses in hippocampus. A postsynaptic localization of BK channels was also supported by the finding that the channel coimmunoprecipitated with PSD95, a protein solely expressed in the postsynaptic compartment. These results thus demonstrate that BK channels reside in both post- and presynaptic compartments of hippocampal pyramidal neurons. [source]


    Cognitive disorders and neurogenesis deficits in Huntington's disease mice are rescued by fluoxetine

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2005
    Helen E. Grote
    Abstract Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeat encoding an extended polyglutamine tract in the huntingtin protein. Affected individuals display progressive motor, cognitive and psychiatric symptoms (including depression), leading to terminal decline. Given that transgenic HD mice have decreased hippocampal cell proliferation and that a deficit in neurogenesis has been postulated as an underlying cause of depression, we hypothesized that decreased hippocampal neurogenesis contributes to depressive symptoms and cognitive decline in HD. Fluoxetine, a serotonin-reuptake inhibitor commonly prescribed for the treatment of depression, is known to increase neurogenesis in the dentate gyrus of wild-type mouse hippocampus. Here we show that hippocampal-dependent cognitive and depressive-like behavioural symptoms occur in HD mice, and that the administration of fluoxetine produces a marked improvement in these deficits. Furthermore, fluoxetine was found to rescue deficits of neurogenesis and volume loss in the dentate gyrus of HD mice. [source]


    Strain-dependent regulation of neurotransmission and actin-remodelling proteins in the mouse hippocampus

    GENES, BRAIN AND BEHAVIOR, Issue 2 2006
    D. D. Pollak
    Individual mouse strains differ significantly in terms of behaviour, cognitive function and long-term potentiation. Hippocampal gene expression profiling of eight different mouse strains points towards strain-specific regulation of genes involved in neuronal information storage. Protein expression with regard to strain- dependent expression of structures related to neuronal information storage has not been investigated yet. Herein, a proteomic approach based on two-dimensional gel electrophoresis coupled with mass spectrometry (MALDI-TOF/TOF) has been chosen to address this question by determining strain-dependent expression of proteins involved in neurotransmission and activity-induced actin remodelling in hippocampal tissue of five mouse strains. Of 31 spots representing 16 different gene products analysed and quantified, N -ethylmaleimide-sensitive fusion protein, N -ethylmaleimide-sensitive factor attachment protein-,, actin-like protein 3, profilin and cofilin were expressed in a strain-dependent manner. By treating protein expression as a phenotype, we have shown significant genetic variation in brain protein expression. Further experiments in this direction may provide an indication of the genetic elements that contribute to the phenotypic differences between the selected strains through the expressional level of the translated protein. In view of this, we propose that proteomic analysis enabling to concomitantly survey the expression of a large number of proteins could serve as a valuable tool for genetic and physiological studies of central nervous system function. [source]


    Heterogeneity of Kir4.1 channel expression in glia revealed by mouse transgenesis

    GLIA, Issue 16 2009
    Xiaofang Tang
    Abstract The weakly inwardly rectifying K+ channel Kir4.1 is found in many glial cells including astrocytes. However, questions remain regarding the relative contribution of Kir4.1 to the resting K+ conductance of mature astrocytes in situ. We employed a bacterial artificial chromosome transgenic approach in mice to visualize Kir4.1 expression in vivo. These mice (Kir4.1-EGFP) express enhanced green fluorescent protein (EGFP) under the transcriptional control of the Kir4.1 promoter. The brains of adult Kir4.1-EGFP transgenic mice showed co-expression of EGFP and Kir4.1 in astrocytes. In addition, weaker expression of EGFP was detected in NG2+ glial cells when compared with EGFP expression in GFAP+ glial cells. Whole-cell voltage clamp recordings of EGFP+ glial cells in the CA1 area of the adult mouse hippocampus indicated astrocytes displaying properties consistent with both the "passive" and "complex" subpopulations. EGFP+ cells with bright fluorescence had the linear current,voltage (I,V) relationships and extensive gap junctional coupling characteristic of passive astrocytes. However, EGFP+ glia with weaker fluorescence displayed properties associated with complex astrocytes including nonlinear I,V relationships and lack of intercellular gap junctional coupling. Pharmacological blockade of inward currents implied that Kir4.1 channels constitute the dominant resting K+ conductance in both glial cell types and are more highly expressed in passive astrocytes. These results suggest differential expression of Kir4.1 in glia and that this channel likely underlies the resting K+ conductance in passive and complex astrocytes. © 2009 Wiley-Liss, Inc. [source]


    Model of frequent, recurrent, and spontaneous seizures in the intact mouse hippocampus

    HIPPOCAMPUS, Issue 8 2004
    M. Derchansky
    Abstract This study presents a model of chronic, recurrent, spontaneous seizures in the intact isolated hippocampal preparation from mice aged P8,P25. Field activity from the CA1 pyramidal cell layer was recorded and recurrent, spontaneous seizure-like events (SLEs) were observed in the presence of low Mg2+ (0.25 mM) artificial cerebrospinal fluid (ACSF). Hippocampi also showed interictal epileptiform discharges (IEDs) of 0.9,4.2 Hz occurring between seizures. No age-specific differences were found in SLE occurrence (2 SLEs per 10 min, on average), duration, and corresponding frequencies. After long exposure to low Mg2+ ACSF (>3 h), SLEs were completely reversible within minutes with the application of normal (2 mM Mg2+) ACSF. The AMPA antagonist, CNQX, blocked all epileptiform activity, whereas the NMDA antagonist, APV, did not. The ,-aminobutyric acid (GABA)A antagonist, bicuculline, attenuated and fragmented SLEs, implicating interneurons in SLE generation. The L-type Ca2+ blocker, nifedipine, enhanced epileptiform activity. Analysis of dual site recordings along the septotemporal hippocampus demonstrated that epileptiform activity began first in the temporal pole of the hippocampus, as illustrated by disconnection experiments. Once an SLE had been established, however, the septal hippocampus was sometimes seen to lead the epileptiform activity. The whole hippocampus with intact local circuitry, treated with low Mg2+, provides a realistic model of recurrent spontaneous seizures, which may be used, in normal and genetically modified mice, to study the dynamics of seizures and seizure evolution, as well as the mechanisms of action of anti-epileptic drugs and other therapeutic modalities. © 2004 Wiley-Liss, Inc. [source]


    Transcription factor NF-,B activation after in vivo perforant path LTP in mouse hippocampus

    HIPPOCAMPUS, Issue 6 2004
    Ramiro Freudenthal
    Abstract There is increasing evidence that transcription factors (TFs) play a critical role in maintaining later phases of hippocampal long-term potentiation (LTP). We have been led to study the role in synaptic plasticity of the powerful, yet generally unheralded, NF-,B TF because it may serve as both a signaling molecule after its activation at the synapse and then a transcription initiator upon reaching the nucleus. In the present study, we show that LTP activates NF-,B in the intact mouse hippocampus. Mice were sacrificed 15 min after one of three treatments: tetanization (high-frequency stimulation [HFS]), low-frequency stimulation (LFS), or no stimulated control animals (CT). In a first study, nuclear NF-,B activity from hippocampus was estimated by electrophoretic mobility shift assays (EMSAs). A higher level of hippocampal TF binding to the NF-,B recognition element was found in the HFS group compared with LFS or CT. In a second study, NF-,B activity was evaluated by immunohistochemistry with a specific antibody that recognizes the activated form of NF-,B. This antibody binds to the exposed nuclear location sequence on the p65 subunit of NF-,B consequent to its dissociation from the inhibitory I,B molecule. In the four subfields of hippocampus examined,granule cell layer, hilus of the dentate gyrus, CA3 and CA1 pyramidal fields of the hippocampal gyrus,the highest levels of activated NF-,B, statistically significant in all cases were found after HFS. In certain comparisons, LFS animals also showed significant elevation with respect to CT. These results support the role of NF-,B as part of the synaptic signaling and transcriptional regulation mechanism required in long-term plasticity, emphasizing the combinatorial nature of TF function. © 2004 Wiley-Liss, Inc. [source]


    Increases in tumor necrosis factor-, following transient global cerebral ischemia do not contribute to neuron death in mouse hippocampus

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2005
    Yuki Murakami
    Abstract The actions of tumor necrosis factor-, (TNF-,) produced by resident brain cells and bone marrow-derived cells in brain following a transient global ischemia were evaluated. In wild-type mice (C57Bl/6J) following 20 min ischemia with bilateral common carotid artery occlusion (BCCAo), TNF-, mRNA expression levels in the hippocampus were significantly increased at 3 h and 36 h and exhibited a biphasic expression pattern. There were no hippocampal TNF-, mRNA expression levels at early time points in either wild-type mice bone marrow transplanted (BMT)-chimeric-TNF-, gene-deficient (T/W) or TNF-, gene-deficient mice BMT-TNF-, gene-deficient mice (T/T), although TNF-, mRNA levels were detectable in T/W BMT mice at 36 h. Histopathological findings showed no intergroup differences between wild-type and TNF-, gene-deficient mice at 4 and 7 days after transient ischemia. In addition, nuclear factor-,B (NF-,B) was activated within 12 h after global cerebral ischemia, but electrophoretic mobility shift assays (EMSA) showed no intergroup differences between wild type and TNF-, gene-deficient mice. In summary, early hippocampal TNF-, mRNA expression may not be related to bone marrow-derived cells, and secondary TNF-, expression as early as 36 h after ischemia probably resulted mainly from endogenous brain cells and possibly a few bone marrow-derived cells. Although we cannot exclude the possibility of the TNF-, contribution to the physiologic changes of hippocampus after transient global ischemia, these results indicate that TNF-, does not influence the morphological changes of the hippocampal neurons under our study condition. [source]


    Distinct properties of murine ,5 ,-aminobutyric acid type a receptors revealed by biochemical fractionation and mass spectroscopy

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2009
    Young H. Ju
    Abstract ,-Aminobutyric acid type A receptors (GABAARs) that contain the ,5 subunit are expressed predominantly in the hippocampus, where they regulate learning and memory processes. Unlike conventional postsynaptic receptors, GABAARs containing the ,5 subunit (,5 GABAARs) are localized primarily to extrasynaptic regions of neurons, where they generate a tonic inhibitory conductance. The unique characteristics of ,5 GABAARs have been examined with pharmacological, immunostaining, and electrophysiological techniques; however, little is known about their biochemical properties. The aim of this study was to modify existing purification and enrichment techniques to isolate ,5 GABAARs preferentially from the mouse hippocampus and to identify the ,5 subunit by using tandem mass spectroscopy (MS/MS). The results showed that the detergent solubility of the ,5 subunits was distinct from that of ,1 and ,2 subunits, and the relative distribution of the ,5 subunits in Triton X-100-soluble fractions was correlated with that of the extracellular protein radixin but not with that of the postsynaptic protein gephyrin. Mass spectrometry identified the ,5 subunit and showed that this subunit associates with multiple ,, ,, and , subunits, but most frequently the ,3 subunit. Thus, the ,5 subunits coassemble with similar subunits as their synaptic counterparts yet have a distinct detergent solubility profile. Mass spectroscopy now offers a method for detecting and characterizing factors that confer the unique detergent solubility and possibly cellular location of ,5 GABAARs in hippocampal neurons. © 2009 Wiley-Liss, Inc. [source]


    Expression of insulin-like growth factor system genes during the early postnatal neurogenesis in the mouse hippocampus

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2007
    Jihui Zhang
    Abstract Insulin-like growth factor-1 (IGF-1) is essential to hippocampal neurogenesis and the neuronal response to hypoxia/ischemia injury. IGF (IGF-1 and -2) signaling is mediated primarily by the type 1 IGF receptor (IGF-1R) and modulated by six high-affinity binding proteins (IGFBP) and the type 2 IGF receptor (IGF-2R), collectively termed IGF system proteins. Defining the precise cells that express each is essential to understanding their roles. With the exception of IGFBP-1, we found that mouse hippocampus expresses mRNA for each of these proteins during the first 2 weeks of postnatal life. Compared to postnatal day 14 (P14), mRNA abundance at P5 was higher for IGF-1, IGFBP-2, -3, and -5 (by 71%, 108%, 100%, and 98%, respectively), lower for IGF-2, IGF-2R, and IGFBP-6 (by 65%, 78%, and 44%, respectively), and unchanged for IGF-1R and IGFBP-4. Using laser capture microdissection (LCM), we found that granule neurons and pyramidal neurons exhibited identical patterns of expression of IGF-1, IGF-1R, IGF-2R, IGFBP-2, and -4, but did not express other IGF system genes. We then compared IGF system expression in mature granule neurons and their progenitors. Progenitors exhibited higher mRNA levels of IGF-1 and IGF-1R (by 130% and 86%, respectively), lower levels of IGF-2R (by 72%), and similar levels of IGFBP-4. Our data support a role for IGF in hippocampal neurogenesis and provide evidence that IGF actions are regulated within a defined in vivo milieu. © 2007 Wiley-Liss, Inc. [source]


    Neurogenin 3 cellular and subcellular localization in the developing and adult hippocampus

    THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 10 2010
    Julia Simon-Areces
    Abstract Neurogenin 3 (Ngn3), a proneural gene controlled by the Notch receptor, is implicated in the control of dendrite morphology and synaptic plasticity of cultured hippocampal neurons. Here we report the localization and subcellular distribution of Ngn3 in the hippocampus in vivo and in neuronal cultures. In situ hybridization showed Ngn3 mRNA expression in the pyramidal layer and dentate gyrus of adult mouse hippocampus. Immunohistochemistry studies revealed that Ngn3 localization is mostly cytoplasmic in the hippocampal eminence at embryonic day (E)17 and postnatal day (P)0. At P10 it is cytoplasmic in CA1,CA3 pyramidal neurons and nuclear in granule cells of the dentate gyrus. In the adult hippocampus Ngn3 is localized in the nucleus and cytoplasm of both pyramidal neurons and granule cells. During development of cultured hippocampal neurons, Ngn3 mRNA expression is higher at stages of neuronal polarization, as judged by reverse-transcription polymerase chain reaction (RT-PCR), and it is mostly cytoplasmic. The tracking of the subcellular localization of Ngn3 in neurons infected with a virus expressing myc-Ngn3 suggests that the protein is quickly translocated to the cell nucleus after synthesis and then reexported to the cytoplasm. Treatment with leptomycinB, a potent and specific inhibitor of the exportin CRM1, induced its accumulation into the nucleus, suggesting that CRM1 mediates the nuclear export of Ngn3. These results suggest that Ngn3 may play a role in neuronal development by actions in the cytoplasm. J. Comp. Neurol. 518:1814,1824, 2010. © 2009 Wiley-Liss, Inc. [source]


    A comparative analysis of constitutive and cell-specific promoters in the adult mouse hippocampus using lentivirus vector-mediated gene transfer

    THE JOURNAL OF GENE MEDICINE, Issue 11 2008
    Hitoshi Kuroda
    Abstract Background Viral vectors provide powerful tools for transgene delivery to the mammalian brain to assess the effects of therapeutic proteins, antisense RNAs or small interfering RNAs. A key advantage of such approaches is that specific brain regions implicated in a particular disease can be independently targeted. Methods To optimize transgene expression in sub-regions of the mouse hippocampus and with a view towards devising gene therapy strategies for Alzheimer's disease, we designed lentivirus-based reporter vectors bearing various promoters, including constitutive and cell-specific promoters. Furthermore, we devised methods allowing a side-by-side comparison of transgene expression levels in neural cells both in vitro and in vivo. Results Following stereotaxic injection into the adult mouse hippocampus, titer-adjusted lentiviral vectors bearing constitutive promoters resulted in robust and sub-region-specific transgene expression. Our results show that the human CMV-IE promoter resulted in efficient transgene expression in the entire hippocampus whereas transgene expression mediated by the hybrid hEF1,/HTLV promoter was limited mainly in the dentate gyrus and the CA2/3 region. Finally, the neuron-specific human synapsin I promoter was particularly effective in the dentate gyrus. Conclusions These findings indicate that subregion-specific transgene expression in the hippocampus can be achieved following lentivirus vector-mediated gene transfer. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Orally available compound prevents deficits in memory caused by the Alzheimer amyloid-, oligomers

    ANNALS OF NEUROLOGY, Issue 6 2006
    Matthew Townsend PhD
    Objective Despite progress in defining a pathogenic role for amyloid , protein (A,) in Alzheimer's disease, orally bioavailable compounds that prevent its effects on hippocampal synaptic plasticity and cognitive function have not yet emerged. A particularly attractive therapeutic strategy is to selectively neutralize small, soluble A, oligomers that have recently been shown to mediate synaptic dysfunction. Methods Using electrophysiological, biochemical, and behavioral assays, we studied how scyllo -inositol (AZD-103; molecular weight, 180) neutralizes the acutely toxic effects of A, on synaptic function and memory recall. Results Scyllo -inositol, but not its stereoisomer, chiro -inositol, dose-dependently rescued long-term potentiation in mouse hippocampus from the inhibitory effects of soluble oligomers of cell-derived human A,. Cerebroventricular injection into rats of the soluble A, oligomers interfered with learned performance on a complex lever-pressing task, but administration of scyllo -inositol via the drinking water fully prevented oligomer-induced errors. Interpretation A small, orally available natural product penetrates into the brain in vivo to rescue the memory impairment produced by soluble A, oligomers through a mechanism that restores hippocampal synaptic plasticity. Ann Neurol 2006;60:668,676 [source]


    A Novel Cyclic Squamosamide Analogue Compound FLZ Improves Memory Impairment in Artificial Senescence Mice Induced by Chronic Injection of D-Galactose and NaNO2

    BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 6 2007
    Fang Fang
    Artificially senescent mouse model was induced by consecutive injection of D-galactose (120 mg/kg) and NaNO2 (90 mg/kg) once daily for 60 days. Compound FLZ (75 and 150 mg/kg) was orally administered once daily for 30 days after D-galactose and NaNO2 injection for 30 days. The water maze test was used to evaluate the learning and memory function of mice. The content of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in serum were determined using different biochemical kits. The alterations in hippocampus morphology were assessed by light and electronic microscope. Immunoreactive cells of Bcl-2 in the hippocampus were counted by immunohistochemical staining, and Bcl-2 protein expression was analysed by Western blot method. The results indicate that injection of D-galactose and NaNO2 induces memory impairment and neuronal damage in hippocampus of mice. In addition, serum SOD and GSH-Px activities decreased, while MDA level increased. Bcl-2-positive neurons and Bcl-2 protein expression in the hippocampus decreased remarkably. Oral administration of FLZ for 30 days significantly improved the cognitive deficits and the biochemical markers mentioned above, and also reduced the pathological alterations in mouse hippocampus. The results suggest that FLZ ameliorates memory deficits and pathological injury in artificially senescent mice induced by chronic injection of D-galactose and NaNO2, indicating that FLZ is worth further studies for fighting antisenescence and dementia. [source]