Home About us Contact | |||
Mouse Bone Marrow (mouse + bone_marrow)
Terms modified by Mouse Bone Marrow Selected AbstractsThrombopoietin-induced CXC chemokines, NAP-2 and PF4, suppress polyploidization and proplatelet formation during megakaryocyte maturationGENES TO CELLS, Issue 1 2003Masaaki Oda Background:, We previously reported that the expressions of two CXC chemokines, neutrophil activating peptide-2 (NAP-2) and platelet factor-4 (PF-4), were induced by megakaryocyte-specific cytokine thrombopoietin (TPO) in mouse bone marrow megakaryocytes. The roles of these chemokines on megakaryocyte maturation/differentiation processes, including polyploidization and proplatelet formation (PPF) remain unresolved. Results: ,NAP-2 and PF-4 suppressed the PPF of mature megakaryocytes freshly prepared from mouse bone marrow as well as that of the megakaryocyte progenitors, c-Kit+CD41+ cells, isolated from mouse bone marrow and cultured with TPO. NAP-2 and PF-4 inhibited polyploidization of c-Kit+CD41+ cells in the presence of TPO, and also inhibited the proliferation of c-Kit+CD41+ cells. Conclusions: ,NAP-2 and PF-4 produced by TPO stimulation in megakaryocytes suppress megakaryocyte maturation and proliferation as a feedback control. [source] Activation of Protease-Activated Receptor-2 Leads to Inhibition of Osteoclast Differentiation,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2004Rosealee Smith Abstract PAR-2 is expressed by osteoblasts and activated by proteases present during inflammation. PAR-2 activation inhibited osteoclast differentiation induced by hormones and cytokines in mouse bone marrow cultures and may protect bone from uncontrolled resorption. Introduction: Protease-activated receptor-2 (PAR-2), which is expressed by osteoblasts, is activated specifically by a small number of proteases, including mast cell tryptase and factor Xa. PAR-2 is also activated by a peptide (RAP) that corresponds to the "tethered ligand" created by cleavage of the receptor's extracellular domain. The effect of activating PAR-2 on osteoclast differentiation was investigated. Materials and Methods: Mouse bone marrow cultures have been used to investigate the effect of PAR-2 activation on osteoclast differentiation induced by parathyroid hormone (PTH), 1,25 dihydroxyvitamin D3 [1,25(OH)2D3], and interleukin-11 (IL-11). Expression of PAR-2 by mouse bone marrow, mouse bone marrow stromal cell-enriched cultures, and the RAW264.7 osteoclastogenic cell line was demonstrated by RT-PCR. Results: RAP was shown to inhibit osteoclast differentiation induced by PTH, 1,25(OH)2D3, or IL-11. Semiquantitative RT-PCR was used to investigate expression of mediators of osteoclast differentiation induced by PTH, 1,25(OH)2D3, or IL-11 in mouse bone marrow cultures and primary calvarial osteoblast cultures treated simultaneously with RAP. In bone marrow and osteoblast cultures treated with PTH, 1,25(OH)2D3, or IL-11, RAP inhibited expression of RANKL and significantly suppressed the ratio of RANKL:osteoprotegerin expression. Activation of PAR-2 led to reduced expression of prostaglandin G/H synthase-2 in bone marrow cultures treated with PTH, 1,25(OH)2D3, or IL-11. RAP inhibited PTH- or 1,25(OH)2D3 -induced expression of IL-6 in bone marrow cultures. RAP had no effect on osteoclast differentiation in RANKL-treated RAW264.7 cells. Conclusion: These observations indicate that PAR-2 activation inhibits osteoclast differentiation by acting on cells of the osteoblast lineage to modulate multiple mediators of the effects of PTH, 1,25(OH)2D3, and IL-11. Therefore, the role of PAR-2 in bone may be to protect it from uncontrolled resorption by limiting levels of osteoclast differentiation. [source] Prostaglandin E2 Induces Expression of Receptor Activator of Nuclear Factor,,B Ligand/Osteoprotegrin Ligand on Pre-B Cells: Implications for Accelerated Osteoclastogenesis in Estrogen DeficiencyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2000Masahiro Kanematsu Abstract Estrogen deficiency causes bone loss as a result of accelerated osteoclastic bone resorption. It also has been reported that estrogen deficiency is associated with an increase in the number of pre-B cells in mouse bone marrow. The present study was undertaken to clarify the role of altered B lymphopoiesis and of the receptor activator of nuclear factor-,B ligand (RANKL), a key molecule in osteoclastogenesis, in the bone loss associated with estrogen deficiency. In the presence of prostaglandin E2 (PGE2), the activity to form tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells was significantly greater in bone marrow cells derived from ovariectomized (OVX) mice than in those from sham-operated mice. Northern blot analysis revealed that PGE2 increased the amount of RANKL messenger RNA (mRNA) in bone marrow cells, not only adherent stromal cells but nonadherent hematopoietic cells; among the latter, RANKL mRNA was more abundant in OVX mice than in sham-operated mice and was localized predominantly in B220+ cells. Flow cytometry revealed that most B220+ cells in bone marrow were RANKL positive and that the percentage of RANKL-positive, B220low cells was higher in bone marrow from OVX mice than in that from sham-operated mice. The increase in the expression of RANKL and the percentage of these cells in OVX mice was abolished by the administration of indomethacin in vivo. PGE2 also markedly increased both the level of RANKL mRNA and cell surface expression of RANKL protein in the mouse pre-B cell line 70Z/3. Finally, osteoclastogenic response to PGE2 was reduced markedly by prior depletion of B220+ cells, and it was restored by adding back B220+ cells. Taken together with stimulated cyclo-oxygenase (COX)-2 activity by tumor necrosis factor , (TNF-,) and interleukin-1 (IL-1) in estrogen deficiency, these results suggest that an increase in the number of B220+ cells in bone marrow may play an important role in accelerated bone resorption in estrogen deficiency because B220+ cells exhibit RANKL on the cell surface in the presence of PGE2, thereby leading to accelerated osteoclastogenesis. [source] Estrogen modulates estrogen receptor , and , expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic miceJOURNAL OF CELLULAR BIOCHEMISTRY, Issue S36 2001Shuanhu Zhou Abstract In the mouse, ovariectomy (OVX) leads to significant reductions in cancellous bone volume while estrogen (17,-estradiol, E2) replacement not only prevents bone loss but can increase bone formation. As the E2-dependent increase in bone formation would require the proliferation and differentiation of osteoblast precursors, we hypothesized that E2 regulates mesenchymal stem cells (MSCs) activity in mouse bone marrow. We therefore investigated proliferation, differentiation, apoptosis, and estrogen receptor (ER) , and , expression of primary culture MSCs isolated from OVX and sham-operated mice. MSCs, treated in vitro with 10,7 M E2, displayed a significant increase in ER, mRNA and protein expression as well as alkaline phosphatase (ALP) activity and proliferation rate. In contrast, E2 treatment resulted in a decrease in ER, mRNA and protein expression as well as apoptosis in both OVX and sham mice. E2 up-regulated the mRNA expression of osteogenic genes for ALP, collagen I, TGF-,1, BMP-2, and cbfa1 in MSCs. In a comparison of the relative mRNA expression and protein levels for two ER isoforms, ER, was the predominant form expressed in MSCs obtained from both OVX and sham-operated mice. Cumulatively, these results indicate that estrogen in vitro directly augments the proliferation and differentiation, ER, expression, osteogenic gene expression and, inhibits apoptosis and ER, expression in MSCs obtained from OVX and sham-operated mice. Co-expression of ER,, but not ER,, and osteogenic differentiation markers might indicate that ER, function as an activator and ER, function as a repressor in the osteogenic differentiation in MSCs. These results suggest that mouse MSCs are anabolic targets of estrogen action, via ER, activation. J. Cell. Biochem. Suppl. 36: 144,155, 2001. © 2001 Wiley-Liss, Inc. [source] Role of the leucine-rich repeat domain of cryopyrin/NALP3 in monosodium urate crystal,induced inflammation in miceARTHRITIS & RHEUMATISM, Issue 7 2010Hal M. Hoffman Objective The mechanism by which monosodium urate monohydrate (MSU) crystals intracellularly activate the cryopyrin inflammasome is unknown. The aim of this study was to use a mouse molecular genetics,based approach to test whether the leucine-rich repeat (LRR) domain of cryopyrin is required for MSU crystal,induced inflammation. Methods Cryopyrin-knockout lacZ (Cryo,Z/,Z) mice and mice with the cryopyrin LRR domain deleted and fused to the lacZ reporter (Cryo,LRR Z/,LRR Z) were generated using bacterial artificial chromosome,based targeting vectors, which allow for large genomic deletions. Bone marrow,derived macrophages from Cryo,LRR Z/,LRR Z mice, Cryo,Z/,Z mice, and congenic wild-type (WT) mice were challenged with endotoxin-free MSU crystals under serum-free conditions. Phagocytosis and cytokine expression were assessed by flow cytometry and enzyme-linked immunosorbent assay. MSU crystals also were injected into mouse synovial-like subcutaneous air pouches. The in vivo inflammatory responses were examined. Results Release of interleukin-1, (IL-1,), but not CXCL1 and tumor necrosis factor ,, was impaired in Cryo,LRR Z/,LRR Z and Cryo,Z/,Z mouse bone marrow,derived macrophages compared with WT mouse bone marrow,derived macrophages in response to not only MSU crystals but also other known stimuli that activate the cryopyrin inflammasome. In addition, a comparable percentage of MSU crystals taken up by each type of bone marrow,derived macrophage was observed. Moreover, total leukocyte infiltration in the air pouch and IL-1, production were attenuated in Cryo,Z/,Z and Cryo,LRR Z/,LRR Z mice at 6 hours postinjection of MSU crystals compared with WT mice. Conclusion MSU crystal,induced inflammatory responses were comparably attenuated both in vitro and in vivo in Cryo,LRR Z/,LRR Z and Cryo,Z/,Z mice. Hence, the LRR domain of cryopyrin plays a role in mediating MSU crystal,induced inflammation in this model. [source] Interleukin-27 inhibits human osteoclastogenesis by abrogating RANKL-mediated induction of nuclear factor of activated T cells c1 and suppressing proximal RANK signalingARTHRITIS & RHEUMATISM, Issue 2 2010George D. Kalliolias Objective Interleukin-27 (IL-27) has stimulatory and regulatory immune functions and is expressed in rheumatoid arthritis (RA) synovium. This study was undertaken to investigate the effects of IL-27 on human osteoclastogenesis, to determine whether IL-27 can stimulate or attenuate the osteoclast-mediated bone resorption that is a hallmark of RA. Methods Osteoclasts were generated from blood-derived human CD14+ cells. The effects of IL-27 on osteoclast formation were evaluated by counting the number of tartrate-resistant acid phosphatase,positive multinucleated cells and measuring the expression of osteoclast-related genes. The induction of nuclear factor of activated T cells c1 (NFATc1) and the activation of signaling pathways downstream of RANK were measured by immunoblotting. The expression of key molecules implicated in osteoclastogenesis (NFATc1, RANK, costimulatory receptors, and immunoreceptor tyrosine,based activation motif,harboring adaptor proteins) was measured by real-time reverse transcription,polymerase chain reaction. Murine osteoclast precursors obtained from mouse bone marrow and synovial fluid macrophages derived from RA patients were also tested for their responsiveness to IL-27. Results IL-27 inhibited human osteoclastogenesis, suppressed the induction of NFATc1, down-regulated the expression of RANK and triggering receptor expressed on myeloid cells 2 (TREM-2), and inhibited RANKL-mediated activation of ERK, p38, and NF-,B in osteoclast precursors. Synovial fluid macrophages from RA patients were refractory to the effects of IL-27. In contrast to the findings in humans, IL-27 only moderately suppressed murine osteoclastogenesis, and this was likely attributable to low expression of the IL-27 receptor subunit WSX-1 on murine osteoclast precursors. Conclusion IL-27 inhibits human osteoclastogenesis by a direct mechanism that suppresses the responses of osteoclast precursors to RANKL. These findings suggest that, in addition to its well-known antiinflammatory effects, IL-27 plays a homeostatic role in restraining bone erosion. This homeostatic function is compromised under conditions of chronic inflammation such as in RA synovitis. [source] An endogenous regulator of inflammation, resolvin E1, modulates osteoclast differentiation and bone resorptionBRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2008B S Herrera Background and purpose: The inflammation-resolving lipid mediator resolvin E1 (RvE1) effectively stops inflammation-induced bone loss in vivo in experimental periodontitis. It was of interest to determine whether RvE1 has direct actions on osteoclast (OC) development and bone resorption. Experimental approach: Primary OC cultures derived from mouse bone marrow were treated with RvE1 and analysed for OC differentiation, cell survival and bone substrate resorption. Receptor binding was measured using radiolabelled RvE1. Nuclear factor (NF)-,B activation and Akt phosphorylation were determined with western blotting. Lipid mediator production was assessed with liquid chromatography tandem mass spectrometry. Key results: OC growth and resorption pit formation were markedly decreased in the presence of RvE1. OC differentiation was inhibited by RvE1 as demonstrated by decreased number of multinuclear OC, a delay in the time course of OC development and attenuation of receptor activator of NF-,B ligand-induced nuclear translocation of the p50 subunit of NF-,B. OC survival and apoptosis were not altered by RvE1. Messenger RNA for both receptors of RvE1, ChemR23 and BLT1 is expressed in OC cultures. Leukotriene B4 (LTB4) competed with [3H]RvE1 binding on OC cell membrane preparations, and the LTB4 antagonist U75302 prevented RvE1 inhibition of OC growth, indicating that BLT1 mediates RvE1 actions on OC. Primary OC synthesized the RvE1 precursor 18R -hydroxy-eicosapentaenoic acid and LTB4. Co-incubation of OC with peripheral blood neutrophils resulted in transcellular RvE1 biosynthesis. Conclusions and implications: These results indicate that RvE1 inhibits OC growth and bone resorption by interfering with OC differentiation. The bone-sparing actions of RvE1 are in addition to inflammation resolution, a direct action in bone remodelling. British Journal of Pharmacology (2008) 155, 1214,1223; doi:10.1038/bjp.2008.367; published online 22 September 2008 [source] |