Molecular Variance (molecular + variance)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Genetic structure of native circumpolar populations based on autosomal, mitochondrial, and Y chromosome DNA markers

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2010
Rohina Rubicz
Abstract This study investigates the genetic structure of the present-day inhabitants of Beringia in order to answer questions concerning their origins and evolution. According to recent studies, the ancestors of Native Americans paused for a time in Beringia, during which they differentiated genetically from other Asians before peopling the New World. Furthermore, the Koryaks of Kamchatka share a "ubiquitous" allele (D9S1120) with Native Americans, indicating they may have descended from the same ancestral Beringian population that gave rise to the New World founders. Our results show that a genetic barrier exists between Kamchatkans (Koryaks and Even) and Bering Island inhabitants (Aleuts, mixed Aleuts, and Russians), based on Analysis of Molecular Variance (AMOVA) and structure analysis of nine autosomal short tandem repeats (STRs). This is supported by mitochondrial DNA evidence, but not by analysis of Y chromosome markers, as recent non-native male admixture into the region appears to have partially obscured ancient population relationships. Our study indicates that while Aleuts are descended from the original New World founders, the Koryaks are unlikely to represent a Beringian remnant of the ancestral population that gave rise to Native Americans. They are instead, like the Even, more recent arrivals to Kamchatka from interior Siberia, and the "ubiquitous" allele in Koryaks may result from recent gene flow from Chukotka. Genbank accession numbers for mtDNA sequences: GQ922935-GQ922973. Am J Phys Anthropol 143:62,74, 2010. © 2010 Wiley-Liss, Inc. [source]


A fine map for maternal lineage analysis by mitochondrial hypervariable region in 12 Chinese goat breeds

ANIMAL SCIENCE JOURNAL, Issue 4 2009
Yan-Ping WU
ABSTRACT As the fast pace of genomic research continues to identify mitochondrial lineages in animals, it has become apparent that many independent studies are needed to support a robust phylogenetic inference. The aim of this study was thus to further characterize the maternal lineage, proposed to originate in southwestern region of China, using a wider survey of diverse goat breeds in China. To this end, we sequenced the mitochondrial hypervariable region 1 (HVR1) of the mtDNA control region in 145 goats of 12 Chinese breeds. Phylogenetic analysis revealed that Chinese goats were classified into four distinct lineages (A, B, C and D) as previously reported. A Mantel test and the analysis of Analysis of Molecular Variance (ANOVA) indicated that there was not an obvious geographic structure among Chinese goat breeds. Population expansion analysis based on mismatch distribution and Fu's Fs statistic indicate that two expansion events in Chinese goats occurred respectively at about 11 and 29 mutational time units ago, revealing two star-like subclades in lineage B corresponding to two population expansion events. Moreover, lineage B sequences were presented only in the breeds of southwestern or surrounding regions of China. Multiple lines of evidence from this study and previous studies indicate that for Chinese goats mtDNA lineage B originated from the southwestern region of China. [source]


A prime inference on genetic diversity (RAPDs) in the marine fish Atherinella brasiliensis (Teleostei, Atherinopsidae) from Southern Brazil

ACTA ZOOLOGICA, Issue 2 2010
Maria Cristina Da Silva Cortinhas
Abstract Da Silva Cortinhas, M. C., Glienke, C., Prioli, A. J., Noleto, R. B., Matoso, D. A. and Cestari, M. M. 2010. A prime inference on genetic diversity (RAPDs) in the marine fish Atherinella brasiliensis (Teleostei, Atherinopsidae) from Southern Brazil. ,Acta Zoologica (Stockholm) 91: 242,248 As a result of the importance of Atherinella brasiliensis in estuarine environments, random amplified polymorphic DNA (RAPD) markers were used to verify the genetic diversity in A. brasiliensis from two different places in Paranaguá Bay (Paraná State) and one from the Conceição Lagoon (Santa Catarina State). Cytogenetic data have shown a high karyotypic diversity in some populations, although in others this peculiarity demonstrates rearrangements such as heterochromatinization. In the present study, a low level of genetic structuring between the samples from Conceição Lagoon compared with the others was observed through principal coordinate analysis (PCO), analysis of molecular variance and Mantel test according to 79 RAPD markers. As this specie does not perform horizontal migration and the individuals of Conceição Lagoon are isolated, three hypotheses are proposed to explain the results: (i) similar environments may show homogeneous populations not depending on the geographical distance, (ii) because vicariant events that formed the bays occurred in a recent period, the fragmentation effects over the structuring of the genetic diversity may still be low and not totally detectable by the RAPD technique and (iii) the isolation time or the number of generations may not be enough to promote a possible differentiation and genetic structuring between the specimens of these three places. The specimens of these places present a low level of differentiation and genetic structuring so we can consider them as a unique homogeneous population. [source]


Analysis of ,-globulin mobility on routine clinical CE equipment: Exploring its molecular basis and potential clinical utility

ELECTROPHORESIS, Issue 15 2009
Dieter Vanderschaeghe
Abstract A study was conducted on the variability of ,-globulin mobility in serum protein electrophoresis and its molecular basis. We found that the migration time of ,-globulins can be reproducibly determined (CV=1.1%) on clinical CE equipment. Moreover, we found a significant difference (p<0.001) in the migration of ,-globulins between chronic liver disease patients (n=98) and a healthy reference group (n=47). Serum immunoglobulins were purified from these patients' sera using protein L -agarose and their glycosylation was studied using CE on a DNA sequencer. This glycomics approach revealed that several non-sialylated N-glycans show a moderate Pearson correlation coefficient (r=0.2,0.4) with the migration time of ,-globulins. Their sialylated structures correlate negatively (r=,0.2 to ,0.3). Immunoglobulins are significantly more sialylated in the healthy reference group compared with the patients (p<0.001). We estimated that sialylation heterogeneity contributes about 36% to the molecular variance (carbohydrates and amino acid composition) that affects the electrophoretic mobility of immunoglobulins. This is the first report on the migration time of ,-globulins on a clinical CE instrument and its potential clinical value to the routinely analyzed serum protein CE profiles. [source]


Genetic structure of Japanese populations of an ambrosia beetle, Xylosandrus germanus (Curculionidae: Scolytinae)

ENTOMOLOGICAL SCIENCE, Issue 3 2008
Masaaki ITO
Abstract We examined the genetic structures of 13 Japanese populations of an ambrosia beetle, Xylosandrus germanus (Curculionidae: Scolytinae), to understand the effects of geographical barriers on the colonization dynamics of this species. The genetic structure was studied using portions of the mitochondrial cytochrome oxidase I (COI) gene. A phylogenetic analysis revealed three distinct lineages (clades A, B and C) within X. germanus. Clade A contained 21 haplotypes from all 13 populations; whereas clade B contained eight haplotypes from Hokkaido (Sapporo and Furano), Iwate and Nagano populations; and clade C contained only a single a haplotype from the Hokkaido (Furano) population. In the analysis of molecular variance (amova), the greatest amount of genetic variation was detected between populations in Hokkaido and those in Honshu and other southern islands. Between these two groups of populations, all the values of the coefficient of gene differentiation were significantly larger than zero, except for the Hokkaido (Sapporo) versus Nagano comparison. Our results confirm that for X. germanus, gene flow has been interrupted between Hokkaido and Honshu since the last glacial maximum. [source]


Different portions of the maize root system host Burkholderia cepacia populations with different degrees of genetic polymorphism

ENVIRONMENTAL MICROBIOLOGY, Issue 1 2000
Luigi Chiarini
In order to acquire a better understanding of the spatial and temporal variations of genetic diversity of Burkholderia cepacia populations in the rhizosphere of Zea mays, 161 strains were isolated from three portions of the maize root system at different soil depths and at three distinct plant growth stages. The genetic diversity among B. cepacia isolates was analysed by means of the random amplified polymorphic DNA (RAPD) technique. A number of diversity indices (richness, Shannon diversity, evenness and mean genetic distance) were calculated for each bacterial population isolated from the different root system portions. Moreover, the analysis of molecular variance ( amova) method was applied to estimate the genetic differences among the various bacterial populations. Our results showed that, in young plants, B. cepacia colonized preferentially the upper part of the root system, whereas in mature plants, B. cepacia was mostly recovered from the terminal part of the root system. This uneven distribution of B. cepacia cells among different root system portions partially reflected marked genetic differences among the B. cepacia populations isolated along maize roots on three distinct sampling occasions. In fact, all the diversity indices calculated indicated that genetic diversity increased during plant development and that the highest diversity values were found in mature maize plants, in particular in the middle and terminal portions of the root system. Moreover, the analysis of RAPD patterns by means of the amova method revealed highly significant divergences in the degree of genetic polymorphism among the various B. cepacia populations. [source]


Effects of environmental pollution on microsatellite DNA diversity in wood mouse (Apodemus sylvaticus) populations

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2005
Veerle Berckmoes
Abstract Ten microsatellite DNA loci were surveyed to investigate the effects of heavy metal pollution on the genetic diversity and population genetic structure of seven wood mouse (Apodemus sylvaticus) populations along a heavy metal pollution gradient away from a nonferrous smelter in the south of Antwerp (Flanders, Belgium). Analysis of soil heavy metal concentrations showed that soil Ag, As, Cd, Cu, and Pb decreased with increasing distance from the smelter. Genetic analyses revealed high levels of genetic variation in all populations, but populations from the most polluted sites in the gradient did not differ from those of less-polluted sites in terms of mean observed and expected heterozygosity level and mean allelic richness. No correlation was found between measures of genetic diversity and the degree of heavy metal pollution. However, an analysis of molecular variance and a neighbor-joining tree suggested a contamination-related pattern of genetic structuring between the most polluted and less polluted sites. Pairwise FST values indicated that populations were significantly genetically differentiated, and assignment tests and direct estimates of recent migration rates suggested restricted gene flow among populations. Additionally, genetic differentiation increased significantly with geographical distance, which is consistent with an isolation-by-distance model. We conclude that, at least for our microsatellite DNA markers, genetic diversity in the studied wood mouse populations is not affected greatly by the heavy metal pollution. [source]


CONTEMPORARY PATTERNS IN A HISTORICAL CONTEXT: PHYLOGEOGRAPHIC HISTORY OF THE PIPEVINE SWALLOWTAIL, BATTUS PHILENOR (PAPILIONIDAE)

EVOLUTION, Issue 5 2003
James A. Fordyce
Abstract We examined mitochondrial DNA (mtDNA) variation in pipevine swallowtail butterflies (Battus philenor) from throughout its extant range to provide a historical, phylogeographical context for ecological studies of the disjunct population in California. We evaluate current hypotheses regarding host plant use, behavior, and mimetic relationships of B. philenor populations and generate alternative hypotheses. Compared to populations throughout the rest of the species' range, California populations are ecologically distinct in that they lack mimics, lay significantly larger clutches of eggs, and exclusively use a unique, endemic larval host plant. Analysis of molecular variance, tests of population differentiation, and nested clade analysis of mtDNA variation indicate that, despite low levels of population genetic structure across the species' range, there is evidence of recent range expansion from presumed Pleistocene refuge(s) in southeastern North America. Colonization of California appears to have been a recent event. This phylogeographic investigation also suggests that the evolution of life-history adaptations to a novel larval host has occurred rapidly in California and the lack of mimics in California may be attributable to the recency of colonization. [source]


Genetic population structure of the net-winged midge, Elporia barnardi (Diptera: Blephariceridae) in streams of the south-western Cape, South Africa: implications for dispersal

FRESHWATER BIOLOGY, Issue 1 2003
M. J. Wishart
SUMMARY 1.,The net-winged midges (Diptera: Blephariceridae), with highly specific habitat requirements and specialised morphological adaptations, exhibit high habitat fidelity and a limited potential for dispersal. Given the longitudinal and hierarchical nature of lotic systems, along with the geological structure of catchment units, we hypothesise that populations of net-winged midge should exhibit a high degree of population sub-structuring. 2.,Sequence variation in the cytochrome c oxidase subunit I (COI) region of the mitochondrial DNA (mtDNA) was examined to determine patterns of genetic variation and infer historical and contemporary processes important in the genetic structuring of populations of Elporia barnardi. The DNA variation was examined at sites within streams, between streams in the same range, and between mountain ranges in the south-western Cape of South Africa. 3.,Twenty-five haplotypes, 641 bp in length, were identified from the 93 individuals sampled. A neighbour-joining tree revealed two highly divergent clades (,5%) corresponding to populations from the two mountain ranges. A number of monophyletic groups were identified within each clade, associated with individual catchment units. 4.,The distribution of genetic variation was examined using analysis of molecular variance (amova). This showed most of the variation to be distributed among the two ranges (,80%), with a small percentage (,15%) distributed among streams within each range. Similarly, variation among streams on Table Mountain was primarily distributed among catchment units (86%). A Mantel's test revealed a significant relationship between genetic differentiation and geographical distance, suggesting isolation by distance (P < 0.001). 5.,Levels of sequence divergence between the two major clades, representing the two mountain ranges, are comparable with those of some intra-generic species comparisons. Vicariant events, such as the isolation of the Peninsula mountain chain and Table Mountain, may have been important in the evolution of what is now a highly endemic fauna. 6.,The monophyletic nature of the catchment units suggests that dispersal is confined to the stream environment and that mountain ridges provide effective physical barriers to dispersal of E. barnardi. [source]


Genetic evidence for `leaky' cohorts in the semivoltine stonefly Peltoperla tarteri (Plecoptera: Peltoperlidae)

FRESHWATER BIOLOGY, Issue 3 2002
ALICIA S. SCHULTHEIS
1.,Genetic techniques are being used increasingly to address questions about dispersal and gene flow of freshwater invertebrates. However, population genetic structure can be affected by factors other than dispersal. Many stream insects have long life cycles that result in the simultaneous existence of multiple cohorts throughout the larval development period. If larval development is fixed, successive cohorts may be reproductively isolated and, as a result, genetically distinct. In such cases, significant levels of genetic differentiation between cohorts could confound estimates of dispersal based on population genetic structure. 2.,Peltoperla tarteri is a stonefly that can be abundant in Appalachian headwater streams. Although P. tarteri is univoltine at the type locality (Big Paint Hollow, WV, U.S.A.), the study populations in southwestern Virginia, U.S.A., were semivoltine. This semivoltine life cycle results in the simultaneous existence of multiple cohorts with the potential for significant genetic differentiation among them. 3.,Levels of genetic differentiation among P. tarteri cohorts were analysed with mitochondrial DNA (mtDNA) sequence data from the non-coding origin of replication or `control' region from 93 individuals from two successive cohorts (collected in 1998 and 1999). 4.,Analysis of molecular variance (AMOVA) indicated no genetic differentiation among cohorts (FST=0.0), and gene flow among cohorts was very high (Nm=,). 5.,High levels of gene flow among cohorts suggest that larval development of P. tarteri is not fixed. Gene flow among cohorts most likely occurs as a result of a cohort split in which some individuals complete development in one or three years instead of two. [source]


Eastern Beringian biogeography: historical and spatial genetic structure of singing voles in Alaska

JOURNAL OF BIOGEOGRAPHY, Issue 8 2010
Marcelo Weksler
Abstract Aim Pleistocene climatic cycles have left marked signatures in the spatial and historical genetic structure of high-latitude organisms. We examine the mitochondrial (cytochrome b) genetic structure of the singing vole, Microtus miurus (Rodentia: Cricetidae: Arvicolinae), a member of the Pleistocene Beringian fauna, and of the insular vole, Microtus abbreviatus, its putative sister species found only on the St Matthew Archipelago. We reconstruct the phylogenetic and phylogeographical structure of these taxa, characterize their geographical partitioning and date coalescent and cladogenetic events in these species. Finally, we compare the recovered results with the phylogenetic, coalescent and spatial genetic patterns of other eastern Beringian mammals and high-latitude arvicoline rodents. Location Continental Alaska (alpine and arctic tundra) and the St Matthew Archipelago (Bering Sea). Methods We generated and analysed cytochrome b sequences of 97 singing and insular voles (M. miurus and M. abbreviatus) from Alaska. Deep evolutionary structure was inferred by phylogenetic analysis using parsimony, maximum likelihood and Bayesian approaches; the geographical structure of genetic diversity was assessed using analysis of molecular variance and network analysis; ages of cladogenetic and coalescent events were estimated using a relaxed molecular clock model with Bayesian approximation. Results Regional nucleotide diversity in singing voles is higher than in other high-latitude arvicoline species, but intra-population diversity is within the observed range of values for arvicolines. Microtus abbreviatus specimens are phylogenetically nested within M. miurus. Molecular divergence date estimates indicate that current genetic diversity was formed in the last glacial (Wisconsinan) and previous interglacial (Sangamonian) periods, with the exception of a Middle Pleistocene split found between samples collected in the Wrangell Mountains region and all other singing vole samples. Main conclusions High levels of phylogenetic and spatial structure are observed among analysed populations. This pattern is consistent with that expected for a taxon with a long history in Beringia. The spatial genetic structure of continental singing voles differs in its northern and southern ranges, possibly reflecting differences in habitat distribution between arctic and alpine tundra. Our phylogenetic results support the taxonomic inclusion of M. miurus in its senior synonym, M. abbreviatus. [source]


Contrasting patterns of nuclear microsatellite genetic structure of Fraxinus mandshurica var. japonica between northern and southern populations in Japan

JOURNAL OF BIOGEOGRAPHY, Issue 6 2010
Li-Jiang Hu
Abstract Aim, The aim of this study is to detect extant patterns of population genetic structure of Fraxinus mandshurica var. japonica in Japan, and to provide insights into the post-glacial history of this species during the Holocene. Location, Hokkaido and Honshu islands, Japan (including the Oshima and Shimokita peninsulas). Methods, We examined nine polymorphic nuclear microsatellite loci to assess genetic variation within and among 15 populations across almost the entire range of the species in Japan. Extant patterns of geographical structure were analysed using Bayesian clustering, Monmonier's algorithm, analysis of molecular variance, Mantel tests and principal coordinates analysis. Recent bottlenecks within populations and regional genetic variation were also assessed. Results, Northern populations (Hokkaido Island and the Shimokita Peninsula) formed a single homogeneous deme, maintaining the highest level of allelic diversity on the Oshima Peninsula. By contrast, southern populations (Honshu Island) demonstrated strong substructure on both coasts. Specifically, populations on the Pacific side of Honshu exhibited significant bottlenecks and erosion of allelic diversity but preserved distinct subclusters diverging from widespread subclusters on the Japan Sea side of this island. Main conclusions, Genetic evidence and life history traits suggest that F. mandshurica occupied cryptic northern refugia on the Oshima Peninsula during the Last Glacial Maximum, which is reflected in the species' extant northern distribution. Strong geographical structure in southern populations, in agreement with fossil pollen records, suggests geographical isolation by mountain ranges running north,south along Honshu. Given that this tree species is cold-adapted and found in riparian habitats, populations on the Pacific side of Honshu probably contracted into higher-elevation swamps during warm post-glacial periods, leading to a reduction of effective population sizes and rare allelic richness. [source]


Phylogeography of the world's tallest angiosperm, Eucalyptus regnans: evidence for multiple isolated Quaternary refugia

JOURNAL OF BIOGEOGRAPHY, Issue 1 2010
Paul G. Nevill
Abstract Aim, There is a need for more Southern Hemisphere phylogeography studies, particularly in Australia, where, unlike much of Europe and North America, ice sheet cover was not extensive during the Last Glacial Maximum (LGM). This study examines the phylogeography of the south-east Australian montane tree species Eucalyptus regnans. The work aimed to identify any major evolutionary divergences or disjunctions across the species' range and to examine genetic signatures of past range contraction and expansion events. Location, South-eastern mainland Australia and the large island of Tasmania. Methods, We determined the chloroplast DNA haplotypes of 410 E. regnans individuals (41 locations) based on five chloroplast microsatellites. Genetic structure was examined using analysis of molecular variance (AMOVA), and a statistical parsimony tree was constructed showing the number of nucleotide differences between haplotypes. Geographic structure in population genetic diversity was examined with the calculation of diversity parameters for the mainland and Tasmania, and for 10 regions. Regional analysis was conducted to test hypotheses that some areas within the species' current distribution were refugia during the LGM and that other areas have been recolonized by E. regnans since the LGM. Results, Among the 410 E. regnans individuals analysed, 31 haplotypes were identified. The statistical parsimony tree shows that haplotypes divided into two distinct groups corresponding to mainland Australia and Tasmania. The distribution of haplotypes across the range of E. regnans shows strong geographic patterns, with many populations and even certain regions in which a particular haplotype is fixed. Many locations had unique haplotypes, particularly those in East Gippsland in south-eastern mainland Australia, north-eastern Tasmania and south-eastern Tasmania. Higher haplotype diversity was found in putative refugia, and lower haplotype diversity in areas likely to have been recolonized since the LGM. Main conclusions, The data are consistent with the long-term persistence of E. regnans in many regions and the recent recolonization of other regions, such as the Central Highlands of south-eastern mainland Australia. This suggests that, in spite of the narrow ecological tolerances of the species and the harsh environmental conditions during the LGM, E. regnans was able to persist locally or contracted to many near-coastal refugia, maintaining a diverse genetic structure. [source]


Genetic diversity and phylogeographic analysis of Pinus leiophylla: a post-glacial range expansion

JOURNAL OF BIOGEOGRAPHY, Issue 9 2009
Abril Rodríguez-Banderas
Abstract Aim, Mexico is a centre of diversity for species of the genus Pinus, most of which have restricted geographical distributions. An exception is Pinus leiophylla Schiede and Deppe, which is widely distributed throughout most of Mexico's mountainous regions. We attempt to reconstruct the phylogeographic history of this species, in order to determine if its current broad distribution is associated with major events of environmental change that occurred during the Quaternary. Location, Coniferous forests in Sierra Madre Occidental, Eje Volcánico Transversal and Sierra Montañosa del Norte de Oaxaca, Mexico. Methods, A total of 323 individuals of both P. leiophylla var. leiophylla and P. leiophylla var. chihuahuana sampled from 22 populations were screened for variation at six paternally inherited chloroplast DNA microsatellite markers (cpSSR). In addition to haplotypic diversity estimates and neutrality tests, the following clustering methods were employed: principal components analysis (PCA), analysis of molecular variance (AMOVA), spatial analysis of molecular variance (SAMOVA), haplotype network and a technique similar to Croizat's panbiogeographical method of individual and generalized tracks. Results, The combination of mutations at the six microsatellites yielded a total of 92 different haplotypes. The percentage of shared haplotypes between varieties (P. leiophylla var. leiophylla and P. leiophylla var. chihuahuana) was only 2.2%. The average haplotypic diversity for the species was H = 0.760. PCA and SAMOVA indicate the presence of four main genetic clusters. The estimated divergence time between the two most frequent haplotypes was between 75,000 and 110,000 years. Significantly large negative Fs values suggest that most of the sampled populations are currently expanding. Individual and generalized tracks identified three potential zones that may have harboured ancestral populations of P. leiophylla and from which the expansion of this species started, as well as two secondary contact zones between the two varieties. Main conclusions, The results indicate that one of the three potential areas hypothesized to have harboured ancestral populations of P. leiophylla may be related to the origin of P. leiophylla var. chihuahuana, while the other two may be related to the origin of P. leiophylla var. leiophylla. The current broad distribution of P. leiophylla is probably associated with its strong colonization ability. [source]


Phylogeographical structure in the coastal species Senecio rodriguezii (Asteraceae), a narrowly distributed endemic Mediterranean plant

JOURNAL OF BIOGEOGRAPHY, Issue 7 2009
Arántzazu Molins
Abstract Aim, Our goals were (1) to assess the levels of chloroplast DNA variation in a narrowly distributed plant restricted to continental islands, (2) to ascertain whether a phylogeographical structure is present in plants restricted to coastal linear systems, and (3) to interpret the results in the light of the known palaeogeography of these islands. Location, The Eastern Balearic Islands (Majorca and Minorca) in the Western Mediterranean Basin. Methods, Sampling included 134 individuals from 28 populations of Senecio rodriguezii covering the entire range of the species. Sequences of the chloroplast genome (trnT,trnL spacer) were obtained and parameters of population genetic diversity and substructure were determined (hsht, Gst). The geographical structure of genetic variation was assessed by an analysis of molecular variance (AMOVA). Additionally, a spatial AMOVA (SAMOVA) was used to identify groups of populations that were geographically homogeneous and maximally differentiated from each other. Finally, a pattern of isolation by distance was assessed by testing the correlation between the matrix of pairwise ,ST values and the matrix of geographical distances between pairs of populations using a Mantel test. Results, Seven haplotypes were detected in S. rodriguezii. Only two of them were shared between islands; all of the others were restricted to Majorca (two) or Minorca (three). Overall, we found high levels of genetic diversity and significant geographical structuring of cpDNA markers. Most of the variation detected can be attributed to differences among populations (84.6%), but there was also a significant differentiation between the islands. Main conclusions, Our results support the view that the Balearic Islands constitute a reservoir of genetic diversity, not only for widespread Mediterranean taxa, but also for endemic ones. The intraspecific genetic structure found in S. rodriguezii suggests that its population history was dominated by both expansion and contraction events. This has resulted in a species that is highly structured genetically, showing very few shared haplotypes between islands, and a high number of haplotypes restricted to small geographical areas within the islands. Changes in habitat availability and dynamic processes of population fragmentation and connectivity due to repeated cycles of sea-level changes during the Quaternary are the possible underlying factors that have shaped the cpDNA pool of this endemic species on a regional scale. [source]


Surviving glacial ages within the Biotic Gap: phylogeography of the New Zealand cicada Maoricicada campbelli

JOURNAL OF BIOGEOGRAPHY, Issue 4 2009
Kathy B. R. Hill
Abstract Aim, New Zealand is an ideal location in which to investigate the roles of landscape and climate change on speciation and biogeography. An earlier study of the widespread endemic cicada Maoricicada campbelli (Myers) found two phylogeographically distinguishable major clades , northern South Island plus North Island (northern-SI + NI) and Otago. These two clades appeared to have diverged on either side of an area of the South Island known as the Biotic Gap. We sampled more intensively to test competing theories for this divergence. We aimed to discover if M. campbelli had survived within the Biotic Gap during recent glacial maxima, and if predicted areas of secondary contact between the two major clades existed. Location, New Zealand. Methods, We analysed mitochondrial DNA sequences (1520 bp; 212 individuals; 91 populations) using phylogenetic (maximum likelihood, Bayesian), population genetic (analysis of molecular variance) and molecular dating methods (Bayesian relaxed clock with improved priors). Results, We found strong geographical structuring of genetic variation. Our dating analyses suggest that M. campbelli originated 1.83,2.58 Ma, and split into the two major clades 1.45,2.09 Ma. The main subclades in the northern-SI + NI clade arose almost simultaneously at 0.69,1.03 Ma. Most subclades are supported by long internal branches and began to diversify 0.40,0.78 Ma. We found four narrow areas of secondary contact between the two major clades. We also found a difference between calling songs of the Otago vs. northern-SI + NI clades. Main conclusions, Phylogeographical patterns within M. campbelli indicate an early Pleistocene split into two major clades, followed by late Pleistocene range expansion and in situ population differentiation of subclades. The northern-SI + NI clade diversified so rapidly that the main subclade relationships cannot be resolved, and we now have little evidence for a disjunction across the Biotic Gap. Structure within the main subclades indicates rapid divergence after a common bottlenecking event, perhaps attributable to an extremely cold glacial maximum at c. 0.43 Ma. Clade structure and dating analyses indicate that M. campbelli survived in many refugia during recent glacial maxima, including within the Biotic Gap. The narrow overlap between the two major clades is attributed to recent contact during the current interglacial and slow gene diffusion. The two major clades appear to be in the early stages of speciation based on genetic and behavioural differences. [source]


Genetic structure of Hypochaeris uniflora (Asteraceae) suggests vicariance in the Carpathians and rapid post-glacial colonization of the Alps from an eastern Alpine refugium

JOURNAL OF BIOGEOGRAPHY, Issue 12 2007
Patrik Mráz
Abstract Aim, The range of the subalpine species Hypochaeris uniflora covers the Alps, Carpathians and Sudetes Mountains. Whilst the genetic structure and post-glacial history of many high-mountain plant taxa of the Alps is relatively well documented, the Carpathian populations have often been neglected in phylogeographical studies. The aim of the present study is to compare the genetic variation of the species in two major European mountain systems , the Alps and the Carpathians. Location, Alps and Carpathians. Methods, The genetic variation of 77 populations, each consisting of three plants, was studied using amplified fragment length polymorphism (AFLP). Results, Neighbour joining and principal coordinate analyses revealed three well-supported phylogeographical groups of populations corresponding to three disjunct geographical regions , the Alps and the western and south-eastern Carpathians. Moreover, two further clusters could be distinguished within the latter mountain range, one consisting of populations from the eastern Carpathians and the second consisting of populations from the southern Carpathians. Populations from the Apuseni Mountains had an intermediate position between the eastern and southern Carpathians. The genetic clustering of populations into four groups was also supported by an analysis of molecular variance, which showed that most genetic variation (almost 46%) was found among these four groups. By far the highest within-population variation was found in the eastern Carpathians, followed by populations from the southern and western Carpathians. Generally, the populations from the Alps were considerably less variable and displayed substantially fewer region-diagnostic markers than those from the south-eastern Carpathians. Although no clear geographical structure was found within the Alps, based on neighbour joining or principal coordinate analyses, some trends were obvious: populations from the easternmost part were genetically more variable and, together with those from the south-western part, exhibited a higher proportion of rare AFLP fragments than populations in other areas. Moreover, the total number of AFLP fragments per population, the percentage of polymorphic loci and the proportion of rare AFLP fragments significantly decreased from east to west. Main conclusions, Deep infraspecific phylogeographical gaps between the populations from the Alps and the western and south-eastern Carpathians suggest the survival of H. uniflora in three separate refugia during the last glaciation. Our AFLP data provide molecular evidence for a long-term geographical disjunction between the eastern and western Carpathians, previously suggested from the floristic composition at the end of 19th century. It is likely that Alpine populations survived the Last Glacial in the eastern part of the Alps, from where they rapidly colonized the rest of the Alps after the ice sheet retreated. Multiple founder effects may explain a gradual loss of genetic variation during westward colonization of the Alps. [source]


Morphological divergence and origin of sympatric populations of European whitefish (Coregonus lavaretus L.) in Lake Femund, Norway

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2005
K. ØSTBYE
Abstract Combining morphological and genetic analysis, we compared patterns of diversification within and between morphs among sympatric European whitefish (Coregonus lavaretus L.) populations in Lake Femund, Norway. Seven external populations, from potential colonization routes into Lake Femund were included. We found that deep-, shallow-, river- and bay spawning populations are distinct morphs in Lake Femund. Within morphs, populations range from being similar genetically (Fst = 0,0.005) among deep-spawning populations to being highly differentiated (Fst = 0.153) between bay-spawning populations. Between morphs, genetic differences ranged from a low (Fst = 0.008,0.022) between deep- and shallow-spawning populations to high difference (Fst = 0.125,0.143) between shallow- and bay-spawning populations. A higher proportion of molecular variance was seen among (3.9%) than within morphs (2.8%). The adaptive gene combinations behind the four morphs seem to have originated within the lake, although the lake could have been colonized from more than one source population. [source]


Low variation but strong population structure in mitochondrial control region of the plains topminnow, Fundulus sciadicus

JOURNAL OF FISH BIOLOGY, Issue 5 2009
C. Li
The plains topminnow Fundulus sciadicus is a freshwater killifish endemic to the Great Plains of North America. Rising concerns for future viability of this species have prompted recent changes in its conservation status. In this study, the results of a range-wide population genetic survey based on the sequence of entire mitochondrial control region (CR) are presented. A total of 181 fish were collected from 11 sites in Nebraska and 10 sites in Missouri spanning the distribution range of the species. Seven polymorphic sites were found in the 966 base pairs of the CR, and only nine unique haplotypes were detected among all fish. Phylogenetic analysis and statistical parsimony networks identified two distinct clades. The first included fish in the Osage, Gasconade and Spring River drainages in Missouri, while the second included individuals from Nebraska and the Lamine River in Missouri, although the Lamine River is much closer to the other Missouri sites than to the Nebraska sites. Pair-wise FST and average population distances indicated that populations from most drainages are genetically distinct, as 93% of the total molecular variance was attributed to among-drainage effects. Four sites within the main distributions of this species and a highly disjunct site from the south-western portion of the range are suggested as potential targets for conservation. [source]


Fine scale genetic population structure of the freshwater and Omono types of nine-spined stickleback Pungitius pungitius (L.) within the Omono River system, Japan

JOURNAL OF FISH BIOLOGY, Issue 2006
T. Tsuruta
The fine scale geographic population structure of two types of nine-spined stickleback Pungitius pungitius (the widely distributed freshwater type and a local endemic, the Omono type) within the Omono River system, Japan, was investigated. A principal components analysis of allele frequencies and neighbour-joining tree for pair-wise FST values, based on 10 allozyme loci, revealed that the Omono type was comprised of four regional groups with relatively high genetic divergence. This grouping was also supported by hierarchical analysis of molecular variance (AMOVA) with a higher variance component among the regional groups, and by an exact test with significant genotypic differentiation for all sample pairs among the regional groups. Moreover, in the clustering of individuals using the Bayesian method, most of individuals in each regional group were assigned the corresponding cluster. On the other hand, there were less pronounced regional groups of the freshwater type, although AMOVA, exact test for genotypic differentiation and Bayesian analysis indicated genetic divergence between two sampling sites in lower reach of the Omono River and other sites. The results suggest that the Omono type represented an earlier colonization, with subsequent invasion of the freshwater type. [source]


Genetic diversity in pollen beetles (Meligethes aeneus) in Sweden: role of spatial, temporal and insecticide resistance factors

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 4 2007
Nadiya Kazachkova
Abstract 1,Pollen beetles Meligethes aeneus are pests of oilseed Brassica crops that are subject to intensive chemical control. Resistance to pyrethroids has been reported. Although this insect is of great economic importance, little is known about its genetic properties and population structure. 2,Amplified fragment length polymorphism (AFLP) analysis with the restriction endonuclease combination EcoRI and PstI was performed on 133 samples of groups of three pollen beetles collected during 2001,04 from five different provinces of Sweden. Both susceptible and resistant insects were studied. Using one primer combination, more than 450 polymorphic DNA fragments were obtained and, in total, four primer combinations were used for analysis. A subsample of 59 single beetles was analysed using one primer combination. 3,AFLP profiles were analysed by similarity measures using the Nei and Li coefficient and Neighbour-joining dendrograms were generated. The dendrogram built using 133 samples showed three distinct groups, each containing beetles representing one generation. Statistical analysis using analysis of molecular variance of single beetle samples showed no evidence of significant genetic difference between resistant and susceptible beetles. Instead, a clear difference between samples, depending on time of collection and generation, was observed. 4,The expected regional population structure, although statistically significant, explained little of the variation. The levels of genetic variation within populations were very high. There appears to be a high rate of gene flow between pollen beetle populations. The implications of this in the context of insecticide resistance are discussed. [source]


ISSR Analysis of the Genetic Diversity of the Endangered Species Sinopodophyllum hexandrum (Royle) Ying from Western Sichuan Province, China

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 10 2006
Meng Xiao
Abstract Sinopodophyllum hexandrum (Royle) Ying is an important medicinal and endangered species. Inter-simple sequence repeats (ISSR) analysis was conducted on seven natural populations from western Sichuan Province to investigate the genetic diversity of S. hexandrum. Leaf samples of 140 individuals were collected. Of the 139 discernible fragments generated by 12 selected primers (among 100 primers), 54 appeared to be polymorphic. The percentage of polymorphic bands (PPB) was 38.85% at the species level, and PPB within a population ranged from 7.91% to 23.74%. Low levels of genetic variation (He= 0.092, Ho= 0.142) and high levels of genetic differentiation among the populations (Gst= 62.25%) was detected on the basis of results from POPGENE and analysis of molecular variance (AMOVA), respectively. Furthermore, the limited gene flow (Nm= 0.361) may result from biological characteristics, such as self-pollination and short distance seed dispersal. Based on the genetic and ecological information available for S. hexandrum, we propose some appropriate strategies for the conservation of the endangered medicinal species in this region, namely rescuing and conserving the core populations for in situ conservation and sampling and preserving more populations with fewer individuals from each population for ex situ conservation. (Managing editor: Li-Hui Zhao) [source]


Use of RAPD and ISSR Markers in Detection of Genetic Variation and Population Structure among Fusarium oxysporum f. sp. ciceris Isolates on Chickpea in Turkey

JOURNAL OF PHYTOPATHOLOGY, Issue 3 2008
H. Bayraktar
Abstract Genetic variation among the isolates of Fusarium oxysporum f. sp. ciceris, the causal agent of chickpea wilt worldwide, was analysed using pathogenicity tests and molecular markers , random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) polymorphism. Hundred and eight isolates were obtained from diseased chickpea plants in 13 different provinces of Turkey, out of which 74 isolates were assessed using 30 arbitrary decamer primers and 20 ISSR primers. Unweighted pair-grouped method by arithmetic average cluster analysis of RAPD, ISSR and RAPD + ISSR datasets provided a substantially similar discrimination among Turkish isolates and divided into three major groups. Group 1, 2 and 3 consisted of 41, 18 and 15 isolates, respectively. These methods revealed a considerable genetic variation among Turkish isolates, but no correlation with regard to the clustering of isolates from different geographic regions. Analysis of molecular variance confirmed that most genetic variability resulted from the differences among isolates within regions. Our results also indicated that the low-genetic differentiation (FST) and high gene flow (Nm) among populations had a significant effect on the emergence and evolutionary development of F. oxysporum f. sp. ciceris. This is the first report on genetic diversity and population structure of F. oxysporum isolates on chickpea in Turkey. [source]


POPULATION GENETIC STRUCTURE OF FINLESS PORPOISES, NEOPHOCAENA PHOCAENOIDES, IN CHINESE WATERS, INFERRED FROM MITOCHONDRIAL CONTROL REGION SEQUENCES

MARINE MAMMAL SCIENCE, Issue 2 2002
Guang Yang
Abstract Seven hundred and twenty base pairs (bp) of the mitochondrial control region from 73 finless porpoises, Neophocaena phocaenoides, in Chinese waters were sequenced. Thirteen variable sites were determined and 17 haplotypes were defined. Of these, 5 and 7 were found only in the Yellow Sea population and the South China Sea population, respectively, whereas no specific haplo-type was found in the Yangtze River population. Phylogenetic analyses using NJ and ML algorithm did not divide the haplotypes into monophyletic clades representing recognized geographic populations of finless porpoises in Chinese waters, suggesting the existence of migration and gene flow among populations. Analysis of molecular variance showed the obvious population genetic structure (,st= 0.41, P < 0.05); however, the structure was mainly between either the Yangtze River population or the Yellow Sea population and the South China Sea population. The genetic diversity (nucleotide diversity and haplotypic diversity) of the Yellow Sea population was significantly higher than those of the Yangtze River population and the South China Sea population, suggesting the relatively later divergence of the latter two populations and supporting the Yellow Sea population as the original center of Neophocaena. [source]


The species delimitation problem in the Simulium damnosum complex, blackfly vectors of onchocerciasis

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 3 2009
R. MORALES-HOJAS
Abstract. The Simulium damnosum Theobald complex (Diptera: Simuliidae) comprises 57 cytoforms grouped into six subcomplexes. Previous phylogenetic studies using gene sequences have not completely resolved the evolutionary relationships of the cytoforms. The present study investigated the systematics of the complex using a phylogeographic approach. The differentiation between eastern and western forms observed in the phylogenetic studies is confirmed in the estimated haplotype networks. However, haplotypes tend to group in geographical clades and not according to cytoforms. Spatial analyses of the molecular variance also resulted in optimal groupings of sequences that did not correspond to cytoform boundaries. Moreover, Mantel tests showed significant correlations, although not strong, between genetic and geographical distances. This suggests an isolation-by-distance model of differentiation. Furthermore, there are instances in which genetic differentiation between cytoforms is low and not significant. These results indicate a lack of clear genetic differentiation between the cytoforms, which may be explained either by a separation of the taxa recent enough to allow the accumulation of few genetic differences or by recombination between the genomes of the cytoforms, which may be the result of hybridization with introgression or of non-independent evolutionary lineages. The results also emphasize the need for further sampling and for the use of more variable markers in order to clarify the evolutionary history of the group. [source]


Genome scan in the mosquito Aedes rusticus: population structure and detection of positive selection after insecticide treatment

MOLECULAR ECOLOGY, Issue 2 2010
MARGOT PARIS
Abstract Identification of genes involved in local adaptation is particularly challenging for species functioning as a network of interconnected populations undergoing frequent extinctions,recolonizations, because populations are submitted to contrasted evolutionary pressures. Using amplified fragment length polymorphism markers, population genetic structure of the mosquito Aedes rusticus was analysed in five geographical areas of the French Rhône-Alpes region. We included a number of sites that were treated with the bio-insecticide Bacillus thuringiensis israelensis (Bti) for more than 15 years. Analysis of molecular variance revealed that most of the genetic variability was found within populations (96%), with no significant variation among geographical areas, although variation among populations within areas (4%) was significant. The global genetic differentiation index FST was low (0.0366 ± 0.167). However, pairwise FST values were significant and no isolation-by-distance at the regional level was observed, suggesting a metapopulation structure in this species. Bti -treatment had no effect on genetic structure and on within-population genetic diversity. Potential signatures of positive selection associated with Bti -treatment were detected for five loci, even though toxicological bioassays performed on field-collected larvae showed no significant difference in mortality between Bti -treated and nontreated sites. The difficulty of detecting moderate resistance in field-collected larvae together with possible differential persistence of toxins in the environment may explain our inability to detect a toxicological response to Bti in treated sites. The evidence for positive selection occurring at several genomic regions suggests a first step towards Bti resistance in natural mosquito populations treated with this bio-insecticide. Furthermore, this signal was detectable using genomic tools before any toxicological evidence for resistance could be identified. [source]


Power and sample size for nested analysis of molecular variance

MOLECULAR ECOLOGY, Issue 19 2009
BENJAMIN M. FITZPATRICK
Abstract Analysis of molecular variance (amova) is a widely used tool for quantifying the contribution of various levels of population structure to patterns of genetic variation. Implementations of amova use permutation tests to evaluate null hypotheses of no population structure within groups and between groups. With few populations per group, between-group structure might be impossible to detect because only a few permutations of the sampled populations are possible. In fact, with fewer than six total populations, permutation tests will never result in P -values <0.05 for higher-level population structure. I present minimum numbers of replicates calculated from multinomial coefficients and an r script that can be used to evaluate the minimum P -value for any sampling scheme. While it might seem counterintuitive that a large sample of individuals is uninformative about hierarchical structure, the power to detect between-group differences depends on the number of populations per group and investigators should sample appropriately. [source]


Mitochondrial phylogeography of the European sprat (Sprattus sprattus L., Clupeidae) reveals isolated climatically vulnerable populations in the Mediterranean Sea and range expansion in the northeast Atlantic

MOLECULAR ECOLOGY, Issue 17 2008
P. V. DEBES
Abstract We examined the genetic structure of the European sprat (Sprattus sprattus) by means of a 530-bp sequence of the mitochondrial control region from 210 fish originating from seven sampling localities of its distributional range. Phylogeographical analysis of 128 haplotypes showed a phylogenetic separation into two major clades with the Strait of Sicily acting as a barrier to gene flow between them. While no population differentiation was observed based on analysis of molecular variance and net nucleotide differences between samples of the Baltic Sea, the North Sea and the Bay of Biscay nor between the Black Sea and the Bosporus, a strong population differentiation between these samples and two samples from the Mediterranean Sea was found. Further, the biggest genetic distance was observed within the Mediterranean Sea between the populations of the Gulf of Lyon and the Adriatic Sea, indicating genetic isolation of these regions. Low genetic diversities and star-like haplotype networks of both Mediterranean Sea populations point towards recent demographic expansion scenarios after low population size, which is further supported by negative FS values and unimodal mismatch distributions with a low mean. Along the northeast Atlantic coast, a northwards range expansion of a large and stable population can be assumed. The history of a diverse but differentiated Black Sea population remains unknown due to uncertainties in the palaeo-oceanography of this sea. Our genetic data did not confirm the presently used classification into subspecies but are only preliminary in the absence of nuclear genetic analyses. [source]


The genetic structure of cattle populations (Bos taurus) in northern Eurasia and the neighbouring Near Eastern regions: implications for breeding strategies and conservation

MOLECULAR ECOLOGY, Issue 18 2007
MENG-HUA LI
Abstract We investigated the genetic structure and variation of 21 populations of cattle (Bos taurus) in northern Eurasia and the neighbouring Near Eastern regions of the Balkan, the Caucasus and Ukraine employing 30 microsatellite markers. By analyses of population relationships, as well as by a Bayesian-based clustering approach, we identified a genetic distinctness between populations of modern commercial origin and those of native origin. Our data suggested that northern European Russia represents the most heavily colonized area by modern commercial cattle. Further genetic mixture analyses based on individual assignment tests found that native Red Steppe cattle were also employed in the historical breeding practices in Eastern Europe, most probably for incorporating their strong and extensive adaptability. In analysis of molecular variance, within-population differences accounted for ~90% of the genetic variation. Despite some correspondence between geographical proximity and genetic similarity, genetic differentiation was observed to be significantly associated with the difference in breeding purpose among the European populations (percentage of variance among groups and significance: 2.99%, P = 0.02). Our findings give unique genetic insight into the historical patterns of cattle breeding practices in the former Soviet Union. The results identify the neighbouring Near Eastern regions such as the Balkan, the Caucasus and Ukraine, and the isolated Far Eastern Siberia as areas of ,genetic endemism', where cattle populations should be given conservation priority. The results will also be of importance for cost-effective management of their future utilization. [source]


Genetic variation and relationships among eight Indian riverine buffalo breeds

MOLECULAR ECOLOGY, Issue 3 2006
SATISH KUMAR
Abstract Twenty-seven microsatellite loci were used to define genetic variation and relationships among eight Indian riverine buffalo breeds. The total number of alleles ranged from 166 in the Toda breed to 194 each in the Mehsana and the Murrah. Significant departures from the Hardy,Weinberg equilibrium were observed for 26 locus-breed combinations due to heterozygote deficiency. Breed differentiation was analysed by estimation of FST index (values ranging from 0.75% to 6.00%) for various breed combinations. The neighbour-joining tree constructed from chord distances, multidimensional scaling (MDS) display of FST values and Bayesian clustering approach consistently identified the Toda, Jaffarabadi, and Pandharpuri breeds as one lineage each, and the Bhadawari, Nagpuri, Surati, Mehsana and Murrah breeds as admixture. Analysis of molecular variance refuted the earlier classification of these breeds proposed on the basis of morphological and geographical parameters. The Toda buffaloes, reared by a tribe of the same name, represent an endangered breed from the Nilgiri hills in South India. Divergence time of the Toda buffaloes from the other main breeds, calculated from Nei's standard genetic distances based on genotyping data on seven breeds and 20 microsatellite loci, suggested separation of this breed approximately 1800,2700 years ago. The results of the present study will be useful for development of rational breeding and conservation strategies for Indian buffaloes. [source]