Molecular Regulators (molecular + regulator)

Distribution by Scientific Domains


Selected Abstracts


Psoriasis genomics: analysis of proinflammatory (type 1) gene expression in large plaque (Western) and small plaque (Asian) psoriasis vulgaris

BRITISH JOURNAL OF DERMATOLOGY, Issue 4 2004
W. Lew
Summary Background, Type 1 T cells are hypothesized to be central in the immunopathogenesis of psoriasis. Through elaboration of interferon (IFN)-,, type 1 T cells regulate the expression of many ,downstream' inflammatory genes, including an array of chemokines that regulate leucocyte trafficking and activation in skin lesions. Accordingly, disease progression and/or severity might be controlled by the degree to which differing cytokines and chemokines are overexpressed in focal skin regions. To examine this possibility, we studied two forms of chronic psoriasis vulgaris that differ significantly in overall severity and progression: small plaque (SP) psoriasis occurring in Korean patients, and large plaque (LP) psoriasis occurring in North American patients. Objectives, To characterize LP and SP psoriasis vulgaris with respect to expression of proinflammatory genes that define the type 1 T-cell axis in skin lesions [genes encoding interleukin (IL)-12, IFN-,, and IFN-,-regulated chemokines or inflammatory mediators]. Methods, Total cellular RNA of skin samples from groups of patients with LP or SP psoriasis was analysed by quantitative reverse transcription-polymerase chain reaction (TaqMan analysis) to compare the differences in mRNA expression of genes related to the IFN-, pathway. Results, The mRNA expression of keratin 16, CD25, IFN-,, IL-12 p40, signal transducer and activator of transcription-1, inducible nitric oxide synthase, IL-8, macrophage inflammatory protein-3,, monocyte chemoattractant protein-1, S100A12, IFN-,-inducible protein of 10 kDa, IFN-inducible T-cell ,-chemoattractant and monokine induced by IFN-, was increased in the lesions of both LP psoriasis and SP psoriasis. However, IL-18 mRNA expression was significantly different in the lesions of LP psoriasis in comparison with those of SP psoriasis. Conclusions, The results indicate that proinflammatory type 1 genes regulated by IFN-, are similarly increased in both SP and LP psoriasis, but a potential difference in IL-18 exists between these disease forms. The consistent activation of this set of genes argues for a central role of IFN-, as a molecular regulator of inflammation in these distinct subtypes of psoriasis vulgaris. In contrast, disease extent/severity must be controlled by yet other factors. [source]


Generation, persistence and plasticity of CD4 T-cell memories

IMMUNOLOGY, Issue 4 2010
Jason R. Lees
Summary The development of immune memory mediated by T lymphocytes is central to durable, long-lasting protective immunity. A key issue in the field is how to direct the generation and persistence of memory T cells to elicit the appropriate secondary response to provide protection to a specific pathogen. Two prevailing views have emerged; that cellular and molecular regulators control the lineage fate and functional capacities of memory T cells early after priming, or alternatively, that populations of memory T cells are inherently plastic and subject to alterations in function and/or survival at many stages during their long-term maintenance. Here, we will review current findings in CD4 T-cell memory that suggest inherent plasticity in populations of memory CD4 T cells at all stages of their development , originating with their generation from multiple types of primed CD4 T cells, during their persistence and homeostatic turnover in response to T-cell receptor signals, and also following secondary challenge. These multiple aspects of memory CD4 T-cell flexibility contrast the more defined lineages and functions ascribed to memory CD8 T cells, suggesting a dynamic nature to memory CD4 T-cell populations and responses. The flexible attributes of CD4 T-cell memory suggest opportunities and mechanisms for therapeutic manipulation at all phases of immune memory development, maintenance and recall. [source]


Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7

INTERNATIONAL JOURNAL OF CANCER, Issue 2 2010
Da-Woon Jung
Abstract Recent studies have shown that stromal fibroblasts have a more profound influence on the initiation and progression of carcinoma than was previously appreciated. This study aimed at investigating the reciprocal relationship between cancer cells and their associated fibroblasts at both the molecular and cellular level in oral squamous cell carcinoma (OSCC). To identify key molecular regulators expressed by carcinoma-associated fibroblasts (CAF) that promote cancer cell invasion, microarrays were performed by comparing cocultured OSCC cells and CAF with monoculture controls. Microarray and real-time PCR analysis identified marked upregulation of the chemokine (C-C motif) ligand 7 (CCL7) in cocultured CAF. ELISA showed an elevated level of CCL7 secretion from CAF stimulated by coculture with OSCC cells. CCL7 promoted the invasion and migration of OSCC cells, and the invasiveness was inhibited by treatment with CCL7 neutralizing antibody. OSCC cells were shown to express CCR1, CCR2 and CCR3, receptors for CCL7, by RT-PCR. In addition, treatment with anti-CCR1 or anti-CCR3 antibody inhibited CCL7-induced OSCC cell migration, implicating that CCL7 promotes cancer cell migration through CCR1 and CCR3 on OSCC cells. Cytokine antibody array analysis of the supernatant from OSCC cell culture revealed that interleukin-1, was an inducer of CCL7 secretion by CAF. This study confirms the reciprocal relationship of the molecular crosstalk regulating the invasion of OSCC and describes new potential targets for future therapy. [source]


The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory

JOURNAL OF NEUROCHEMISTRY, Issue 1 2001
J. David Sweatt
The mitogen-activated protein kinase (MAP kinase, MAPK) cascade, as the name implies, was originally discovered as a critical regulator of cell division and differentiation. As further details of this signaling cascade were worked out, it became clear that the MAPK cascade is in fact a prototype for a family of signaling cascades that share the motif of three serially linked kinases regulating each other by sequential phosphorylation. Thus, a revised nomenclature arose that uses the term MAPK to refer to the entire superfamily of signaling cascades (comprising the erks, the JNKs and the p38 stress activated protein kinases), and specifies the prototype MAPK as the extracellular signal-regulated kinase (erk). The two erk MAPK isoforms, p44 MAPK and p42 MAPK, are referred to as erk1 and erk2, respectively. The erks are abundantly expressed in neurons in the mature central nervous system, raising the question of why the prototype molecular regulators of cell division and differentiation are present in these non-dividing, terminally differentiated neurons. This review will describe the beginnings of an answer to this question. Interestingly, the general model has begun to emerge that the erk signaling system has been co-opted in mature neurons to function in synaptic plasticity and memory. Moreover, recent insights have led to the intriguing prospect that these molecules serve as biochemical signal integrators and molecular coincidence detectors for coordinating responses to extracellular signals in neurons. In this review I will first outline the essential components of this signal transduction cascade, and briefly describe recent results implicating the erks in mammalian synaptic plasticity and learning. I will then proceed to outline recent results implicating the erks as molecular signal integrators and, potentially, coincidence detectors. Finally, I will speculate on what the critical downstream effectors of the erks are in neurons, and how they might provide a readout of the integrated signal. [source]


The Arabidopsis ATRIP ortholog is required for a programmed response to replication inhibitors

THE PLANT JOURNAL, Issue 3 2009
Paul R. Sweeney
Summary The programmed response to replication inhibitors in eukaryotic cells requires the protein kinase ATR (ataxia telangiectasia mutated and rad3-related), which is activated primarily through the persistence of replication protein A (RPA)-bound single-stranded DNA at stalled replication forks and sites of DNA damage undergoing excision repair. Once activated, ATR initiates a cascade of events, including cell-cycle arrest and induction of DNA repair, to mitigate the mutagenic effects of DNA replication in the presence of damage and/or blockage. While many of the molecular regulators of ATR have been determined in yeast and animal cells, little is known about ATR regulation in plants. To genetically define ATR regulatory pathways in Arabidopsis, we describe here a genetic screen for identifying mutants that display a characteristic phenotype of Arabidopsis atr null mutants , hypersensitivity to the replication blocking agent hydroxyurea (HU). Employing this screen, we isolated a novel mutant, termed hus2 (hydroxyurea-sensitive), that displays hypersensitivity to HU, aphidicolin and ionizing radiation, similar to atr mutants. In addition, cell-cycle progression in response to replication blocks and ionizing radiation is defective in hus2, displaying a nearly identical phenotype to atr mutants. Positional cloning of hus2 reveals a gene sequence similar to yeast Rad26/Ddc2 and ATRIP (ATR interacting protein), suggesting that hus2 encodes an Arabidopsis ATRIP ortholog. [source]


Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development

THE PLANT JOURNAL, Issue 4 2006
Xiaolei Zhuang
Summary Development and organogenesis in both dicot and monocot plants are highly dependent on polar auxin transport (PAT), which requires the proper asymmetric localization of both auxin influx and efflux carriers. In the model dicot plant Arabidopsis thaliana, the trafficking and localization of auxin efflux facilitators such as PIN-FORMED1 (PIN1) are mediated by GNOM, a guanine-nucleotide exchange factor (GEF) for the ADP-ribosylation factor (ARF) family of small GTPases, but molecular regulators of the auxin influx facilitators remain unknown. Here, we show that over-expression of OsAGAP, an ARF-GTPase-activating protein (ARF-GAP) in rice, impaired PAT and interfered with both primary and lateral root development. The lateral root phenotype could be rescued by the membrane-permeable auxin 1-naphthyl acetic acid, but not by indole 3-acetic acid (IAA) or by 2,4-dichloro-phenoxyacetic acid, which require influx facilitators to enter the cells. OsAGAP-over-expressing plants had alterations in vesicle trafficking and localization of the presumptive A. thaliana auxin-influx carrier AUX1, but not in the localization of the auxin efflux facilitators. Together, our data suggest that OsAGAP has a specific role in regulating vesicle trafficking pathways such as the auxin influx pathway, which in turn controls auxin-dependent root growth in plants. [source]