Home About us Contact | |||
Molecular Partners (molecular + partner)
Selected AbstractsDecay-accelerating factor 1 (Daf1) deficiency exacerbates xenobiotic-induced autoimmunityIMMUNOLOGY, Issue 1 2010Christopher B. Toomey Summary Absence of decay-accelerating factor 1 (Daf1) has been shown to enhance T-cell responses and autoimmunity via increased expression of specific cytokines, most notably interferon (IFN)-,. To determine if Daf1 deficiency can exacerbate IFN-,-dependent murine mercury-induced autoimmunity (mHgIA), C57/BL6 Daf1+/+ and Daf1,/, mice were exposed to mercuric chloride (HgCl2) and examined for differences in cytokine expression, T-cell activation and features of humoral autoimmunity. In the absence of Daf1, mHgIA was exacerbated, with increased serum immunoglobulin G (IgG), anti-nuclear autoantibodies (ANAs) and anti-chromatin autoantibodies. This aggravated response could not be explained by increased T-cell activation but was associated with increased levels of IFN-,, interleukin (IL)-2, IL-4 and IL-10 but not IL-17 in Daf1-deficient mice. Anti-CD3/anti-CD28 costimulation of Daf1,/, CD4+ T cells in vitro was also found to increase cytokine expression, but the profile was different from that of mHgIA, suggesting that the cytokine changes observed in Daf1 deficiency reflect a response to mercury. The role of Daf1 in influencing cytokine expression was further examined by stimulation of CD4+ T cells in the presence of anti-CD3 and CD97, a molecular partner for Daf1. This resulted in increased IL-10, decreased IL-17 and IL-21 and decreased IFN-,. These findings demonstrate that the absence of Daf1 exacerbates mHgIA, with changes in the profile of expressed cytokines. Interaction between Daf1 and its molecular partner CD97 was found to modify expression of mHgIA-promoting cytokines, suggesting a possible approach for the suppression of overaggressive cytokine production in autoimmunity. [source] Multiple diverse ligands binding at a single protein site: A matter of pre-existing populationsPROTEIN SCIENCE, Issue 2 2002Buyong Ma Abstract Here, we comment on the steadily increasing body of data showing that proteins with specificity actually bind ligands of diverse shapes, sizes, and composition. Such a phenomenon is not surprising when one considers that binding is a dynamic process with populations in equilibrium and that the shape of the binding site is strongly influenced by the molecular partner. It derives implicitly from the concept of populations. All proteins, specific and nonspecific, exist in ensembles of substates. If the library of ligands in solution is large enough, favorably matching ligands with altered shapes and sizes can be expected to bind, with a redistribution of the protein populations. Point mutations at spatially distant sites may exert large conformational rearrangements and hinge effects, consistent with mutations away from the binding site leading to population shifts and (cross-)drug resistance. A similar effect is observed in protein superfamilies, in which different sequences with similar topologies display similar large-scale dynamic motions. The hinges are frequently at analogous sites, yet with different substrate specificity. Similar topologies yield similar conformational isomers, although with different distributions of population times, owing to the change in the conditions, that is, the change in the sequences. In turn, different distributions relate to binding of different sizes and shapes. Hence, the binding site shape and size are defined by the ligand. They are not independent entities of fixed proportions and cannot be analyzed independently of the binding partner. Such a proposition derives from viewing proteins as dynamic distributions, presenting to the incoming ligands a range of binding site shapes. It illustrates how presumably specific binding molecules can bind multiple ligands. In terms of drug design, the ability of a single receptor to recognize many dissimilar ligands shows the need to consider more diverse molecules. It provides a rationale for higher affinity inhibitors that are not derived from substrates at their transition states and indicates flexible docking schemes. [source] Myosin light chain kinase colocalizes with nonmuscle myosin IIB in myofibril precursors and sarcomeric Z-lines of cardiomyocytesCYTOSKELETON, Issue 7 2006T. V. Dudnakova Abstract Myosin light chain kinase (MLCK) is a key regulator of various forms of cell motility involving actin and myosin II. MLCK is widely present in vertebrate tissues including the myocardium. However, the role of MLCK in cardiomyocyte function is not known. Previous attempts to gain insight into possible roles and identify potential molecular partners were disappointing and equivocal due to cross reactivity of early antibodies with striated muscle MLCK, which has a different genetic locus and a divergent amino acid sequence from the abovementioned enzyme. Using an immunofluorescence approach and a panel of antibodies directed against MLCK, cytoskeletal, and sarcomeric proteins, we localized MLCK to myofibril precursors and Z-lines of sarcomeres in embryonic and adult cardiomyocytes. The same structures contained nonmuscle myosin IIB implicating this protein as a possible target of MLCK. Our results suggest a role for MLCK in cardiomyocyte differentiation and contraction through regulation of nonmuscle myosin IIB. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source] hnRNP K interacts with RNA binding motif protein 42 and functions in the maintenance of cellular ATP level during stress conditionsGENES TO CELLS, Issue 2 2009Toshiyuki Fukuda Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a conserved RNA-binding protein that is involved in multiple processes of gene expression, including chromatin remodeling, transcription, RNA splicing, mRNA stability and translation, together with diverse groups of molecular partners. Here we identified a previously uncharacterized protein RNA binding motif protein 42 (RBM42) as hnRNP K-binding protein. RBM42 directly bound to hnRNP K in vivo and in vitro. RBM42 also directly bound to the 3, untranslated region of p21 mRNA, one of the target mRNAs for hnRNP K. RBM42 predominantly localized within the nucleus and co-localized with hnRNP K there. When cells were treated with agents, puromycin, sorbitol or arsenite, which induced the formation of stress granules (SGs), cytoplasmic aggregates of stalled translational pre-initiation complexes, both hnRNP K and RBM42 localized at SGs. Depletion of hnRNP K by RNA interference decreased cellular ATP level following release from stress conditions. Simultaneous depletion of RBM42 with hnRNP K enhanced the effect of the hnRNP K depletion. Our results indicate that hnRNP K and RBM42 are components of SGs and suggest that hnRNP K and RBM42 have a role in the maintenance of cellular ATP level in the stress conditions possibly through protecting their target mRNAs. [source] Focal Adhesion Kinase pp125FAK Interacts With the Large Conductance Calcium-Activated hSlo Potassium Channel in Human Osteoblasts: Potential Role in Mechanotransduction,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2003Roger Rezzonico Abstract Molecular events of mechanotransduction in osteoblasts are poorly defined. We show that the mechanosensitive BK channels open and recruit the focal adhesion kinase FAK in osteoblasts on hypotonic shock. This could convert mechanical signals in biochemical events, leading to osteoblast activation. Introduction: Mechanical strains applied to the skeleton influence bone remodeling and architecture mainly through the osteoblast lineage. The molecular mechanisms involved in osteoblastic mechanotransduction include opening of mechanosensitive cation channels and the activation of protein tyrosine kinases, notably FAK, but their interplay remains poorly characterized. The large conductance K+ channel (BK) seems likely as a bone mechanoreceptor candidate because of its high expression in osteoblasts and its ability to open in response to membrane stretch or hypotonic shock. Propagation of the signals issued from the mechanosensitivity of BK channels inside the cell likely implies complex interactions with molecular partners involved in mechanotransduction, notably FAK. Methods: Interaction of FAK with the C terminus of the hSlo ,-subunit of BK was investigated using the yeast two-hybrid system as well as immunofluorescence microscopy and coimmunoprecipitation experiments with a rabbit anti-hslo antibody on MG63 and CAL72 human osteosarcoma cell lines and on normal human osteoblasts. Mapping of the FAK region interacting with hSlo was approached by testing the ability of hSlo to recruit mutated ot truncated FAK proteins. Results: To the best of our knowledge, we provide the first evidence of the physical association of FAK with the intracellular part of hslo. We show that FAK/hSlo interaction likely takes place through the Pro-1-rich domain situated in the C-terminal region of the kinase. FAK/hSlo association occurs constitutively at a low, but appreciable, level in human osteosarcoma cells and normal human osteoblasts that express endogenous FAK and hSlo. In addition, we found that application of an hypo-osmotic shock to these cells induced a sustained activation of BK channels associated to a marked increase in the recruitment of FAK on hSlo. Conclusions: Based on these data, we propose that BK channels might play a triggering role in the signaling cascade induced by mechanical strains in osteoblasts. [source] |