Home About us Contact | |||
Molecular Mediators (molecular + mediator)
Selected AbstractsMolecular mediators of metastasis in head and neck squamous cell carcinomaHEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 8 2005Gina M. S. Howell BA Abstract Background. The presence of regional metastasis in patients with head and neck squamous cell carcinoma (HNSCC) is a common and adverse event associated with poor prognosis and high mortality. Although significant improvements in standard therapies have increased the efficacy of local tumor management, the high incidence of tumor recurrence has resulted in limited improvements in overall survival rates. Understanding the molecular mechanisms that mediate HNSCC invasion and metastasis may enable identification of novel therapeutic targets for the prevention and management of tumor dissemination. Methods. A literature review was performed. Results. Several biologic mediators and mechanisms that have been implicated in HNSCC metastasis, such as cell adhesion molecules, proteolytic enzymes, growth factor signaling, metastasis suppressor genes, and chemokine receptors were reviewed. Conclusions. Prevention of HNSCC metastasis is an important clinical objective that requires an increased understanding of the molecular mechanisms of tumor invasion and dissemination. © 2005 Wiley Periodicals, Inc. Head Neck27: XXX,XXX, 2005 [source] CXC chemokine ligand 4 (Cxcl4) is a platelet-derived mediator of experimental liver fibrosis,HEPATOLOGY, Issue 4 2010Mirko Moreno Zaldivar Liver fibrosis is a major cause of morbidity and mortality worldwide. Platelets are involved in liver damage, but the underlying molecular mechanisms remain elusive. Here, we investigate the platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) as a molecular mediator of fibrotic liver damage. Serum concentrations and intrahepatic messenger RNA of CXCL4 were measured in patients with chronic liver diseases and mice after toxic liver injury. Platelet aggregation in early fibrosis was determined by electron microscopy in patients and by immunohistochemistry in mice. Cxcl4,/, and wild-type mice were subjected to two models of chronic liver injury (CCl4 and thioacetamide). The fibrotic phenotype was analyzed by histological, biochemical, and molecular analyses. Intrahepatic infiltration of immune cells was investigated by fluorescence-activated cell sorting, and stellate cells were stimulated with recombinant Cxcl4 in vitro. The results showed that patients with advanced hepatitis C virus,induced fibrosis or nonalcoholic steatohepatitis had increased serum levels and intrahepatic CXCL4 messenger RNA concentrations. Platelets were found directly adjacent to collagen fibrils. The CCl4 and thioacetamide treatment led to an increase of hepatic Cxcl4 levels, platelet activation, and aggregation in early fibrosis in mice. Accordingly, genetic deletion of Cxcl4 in mice significantly reduced histological and biochemical liver damage in vivo, which was accompanied by changes in the expression of fibrosis-related genes (Timp-1 [tissue inhibitor of matrix metalloproteinase 1], Mmp9 [matrix metalloproteinase 9], Tgf -, [transforming growth factor beta], IL10 [interleukin 10]). Functionally, Cxcl4,/, mice showed a strongly decreased infiltration of neutrophils (Ly6G) and CD8+ T cells into the liver. In vitro, recombinant murine Cxcl4 stimulated the proliferation, chemotaxis, and chemokine expression of hepatic stellate cells. Conclusion: The results underscore an important role of platelets in chronic liver damage and imply a new target for antifibrotic therapies. (HEPATOLOGY 2010.) [source] Cellular Adaptation to Chronic Ethanol Results in Altered Compartmentalization and Function of the Scaffolding Protein RACK1ALCOHOLISM, Issue 10 2003Alicia J. Vagts Background: Previously, we found that acute ethanol induces the translocation of the scaffolding protein RACK1 to the nucleus. Recently, we found that nuclear RACK1 mediates acute ethanol induction of immediate early gene c-fos expression. Alterations in gene expression are thought to lead to long-term changes that ultimately contribute to the development of alcohol addiction and toxicity. Therefore, we sought to determine the effects of chronic exposure of cells to ethanol on the cellular compartmentalization of RACK1 and on c-fos messenger RNA (mRNA) and protein expression. Methods: Rat C6 glioma cells were used as the cell culture model. Immunohistochemistry was implemented to visualize the localization of RACK1 and to monitor the protein level of c-fos. Reverse-transcription polymerase chain reaction was used to measure c- fos mRNA levels. The Tat-protein transduction method was used to transduce recombinant Tat-RACK1 into cells as previously described. Results: Chronic exposure of cells to 200 mM ethanol for 24 and 48 hr resulted in the gradual re-distribution of RACK1 out of the nucleus. It is interesting to note that acute ethanol re-challenge immediately after chronic treatment did not result in RACK1 translocation to the nucleus, and nuclear compartmentalization of RACK1 in response to acute ethanol was detected only after 24 hr of withdrawal. Similar patterns were obtained for c-fos expression. Chronic exposure to ethanol did not result in an increase in mRNA or protein levels of c-fos. Furthermore, acute ethanol exposure did not increase c-fos protein levels in cells that were first treated chronically with ethanol. However, transduction of exogenous RACK1 expressed as a Tat-fusion protein was able to rescue c- fos mRNA expression after chronic ethanol exposure. Conclusions: Our data suggest that RACK1 nuclear compartmentalization and ethanol-induced c-fos expression are transient and are desensitized to ethanol during prolonged exposure to high concentrations. The desensitization is temporary, and RACK1 can respond to acute ethanol treatment after a 24-hr withdrawal period. Our data further suggest that the altered compartmentalization of RACK1 leads to differences in c-fos expression upon acute or chronic exposure to ethanol. In summary, RACK1 is an important molecular mediator of the acute and chronic actions of ethanol on the expression of c-fos. These findings could have implications for the molecular signaling pathways leading to pathologic states associated with alcoholism, including toxicity. [source] Changing the pathogenetic roadmap of liver fibrosis?JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 7pt1 2008Where did it start; where will it go? Abstract The pathophysiology of liver injury has attracted the interest of experimentalists and clinicians over many centuries. With the discovery of liver-specific pericytes , formerly called fat-storing cells, Ito-cells, lipocytes, and currently designated as hepatic stellate cells (HSC) , the insight into the cellular and molecular pathobiology of liver fibrosis has evolved and the pivotal role of HSC as a precursor cell-type for extracellular matrix,producing myofibroblasts has been established. Although activation and transdifferentiation of HSC to myofibroblasts is still regarded as the pathogenetic key mechanism of fibrogenesis, recent studies point to a prominent heterogeneity of the origin of myofibroblasts. Currently, the generation of matrix-synthesizing fibroblasts by epithelial,mesenchymal transition, by influx of bone marrow,derived fibrocytes into damaged liver tissue, and by differentiation of circulating monocytes to fibroblasts after homing in the injured liver are discussed as important complementary mechanisms to enlarge the pool of (myo-)fibroblasts in the fibrosing liver. Among the molecular mediators, transforming growth factor-beta (TGF-,) plays a central role, which is controlled by the bone-morphogenetic protein (BMP)-7, an important antagonist of TGF-, action. The newly discovered pathways supplement the linear concept of HSC activation to myofibroblasts, point to fibrosis as a systemic response involving extrahepatic organs and reactions, add further evidence to a more or less uniform concept of organ fibrosis in general (e.g. liver, lung, kidney), and offer innovative approaches for the development of non-invasive biomarkers and antifibrotic trials. [source] Rac and Rho: The Story Behind Melanocyte Dendrite FormationPIGMENT CELL & MELANOMA RESEARCH, Issue 5 2002Glynis Scott Melanocyte dendrites are hormonally responsive actin and microtubule containing structures whose primary purpose is to transport melanosomes to the dendrite tip. Melanocyte dendrites have been an area of intense interest for melanocyte biologists, but it was not until recently that we began to understand the mechanisms underlying their formation. In contrast with melanogenesis, for which numerous mutations in pigment producing genes and mouse models have been identified, a genetic defect resulting in impaired dendrite formation has not been found. Therefore, much of the insight into melanocyte dendrites has come from electron microscopy or in vitro culture systems of normal human and murine melanocytes as well as melanoma cell lines. The growth factors that regulate the formation of melanocyte dendrites have been thoroughly studied and it is clear that multiple signalling systems are able to stimulate, and in some cases inhibit, dendrite formation. Recent data points to the Rho family of small guanosine triphosphate (GTP)-binding proteins as master regulators of dendrite formation, particularly Rac and Rho. In this review I will summarize the progress scientists have made in understanding the structure, hormonal regulation and molecular mediators of melanocyte dendrite formation. [source] Modulation of synaptic plasticity by stress and antidepressantsBIPOLAR DISORDERS, Issue 3 2002Maurizio Popoli Recent preclinical and clinical studies have shown that mechanisms underlying neuronal plasticity and survival are involved in both the outcome of stressful experiences and the action of antidepressants. Whereas most antidepressants predominantly affect the brain levels of monoamine neurotransmitters, it is increasingly appreciated that they also modulate neurotransmission at synapses using the neurotransmitter glutamate (the most abundant in the brain). In the hippocampus, a main area of the limbic system involved in cognitive functions as well as attention and affect, specific molecules enriched at glutamatergic synapses mediate major changes in synaptic plasticity induced by stress paradigms or antidepressant treatments. We analyze here the modifications induced by stress or antidepressants in the strength of synaptic transmission in hippocampus, and the molecular modifications induced by antidepressants in two main mediators of synaptic plasticity: the N -methyl- D -aspartate (NMDA) receptor complex for glutamate and the Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). Both stress and antidepressants induce alterations in long-term potentiation of hippocampal glutamatergic synapses, which may be partly accounted for by the influence of environmental or drug-induced stimulation of monoaminergic pathways projecting to the hippocampus. In the course of antidepressant treatments significant changes have been described in both the NMDA receptor and CaM kinase II, which may account for the physiological changes observed. A central role in these synaptic changes is exerted by brain-derived neurotrophic factor (BDNF), which modulates both synaptic plasticity and its molecular mediators, as well as inducing morphological synaptic changes. The role of these molecular effectors in synaptic plasticity is discussed in relation to the action of antidepressants and the search for new molecular targets of drug action in the therapy of mood disorders. [source] Comparative proteomic analysis between normal skin and keloid scarBRITISH JOURNAL OF DERMATOLOGY, Issue 6 2010C.T. Ong Summary Background, Keloids are pathological scars and, despite numerous available treatment modalities, continue to plague physicians and patients. Objectives, Identification of molecular mediators that contribute to this fibrotic phenotype. Methods, Two-dimensional gel electrophoresis, MALDI-TOF, Mascot online database searching algorithm and Melanie 5 gel analysis software were employed for comparative proteomic analysis between normal skin (NS) and keloid scar (KS) tissue extracts. Results, Seventy-nine protein spots corresponding to 23 and 32 differentially expressed proteins were identified in NS and KS, respectively. Isoforms of heat shock proteins, gelsolin, carbonic anhydrase and notably keratin 10 were strongly expressed in NS along with manganese superoxide dismutase, immune components, antitrypsin, prostatic binding protein and crystalline. Various classes of proteins were found either to be present or to be upregulated in keloid tissue: (i) inflammatory/differentiated keratinocyte markers: S100 proteins, peroxiredoxin I; (ii) wound healing proteins: gelsolin-like capping protein; (iii) fibrogenetic proteins: mast cell ,-tryptase, macrophage migration inhibitory factor (MIF); (iv) antifibrotic proteins: asporin; (v) tumour suppressor proteins: stratifin, galectin-1, maspin; and (vi) antiangiogenic proteins: pigment epithelium-derived factor. Significant increases in expression of asporin, stratifin, galectin-1 and MIF were observed by Western blot analysis in KS. Conclusions, This work has identified differentially expressed proteins specific to KS tissue extracts which can potentially be used as specific targets for therapeutic intervention. [source] Diabetic macular oedema: physical, physiological and molecular factors contribute to this pathological processACTA OPHTHALMOLOGICA, Issue 3 2010Rita Ehrlich Abstract. Diabetic macular oedema (DMO) is an important cause of vision loss in patients with diabetes mellitus. The underlying mechanisms of DMO, on both macrocellular and microcellular levels, are discussed in this review. The pathophysiology of DMO can be described as a process whereby hyperglycaemia leads to overlapping and inter-related pathways that play a role not only in the initial vascular events, but also in the continued tissue insult that leads to chronic DMO. On a macrocellular level, DMO is believed to be in part caused by alterations in hydrostatic pressure, oxygen tension, oncotic pressure and shear stress. Three key components of the microvascular pathways include angiogenic factor expression, inflammation and oxidative stress. These molecular mediators, acting in conjunction with macrocellular factors, which are all stimulated in part by the hyperglycaemia and hypoxia, can have a direct endothelial effect leading to hyperpermeability, disruption of vascular endothelial cell junctions, and leukostasis. The interactions, signalling events and feedback loops between the various molecules are complicated and are not completely understood. However, by attempting to understand the pathways involved in DMO, we can help guide new treatment options targeted towards specific factors or mediators. [source] |