Home About us Contact | |||
Molecular Machines (molecular + machines)
Selected AbstractsFrom Molecular Machines to Microscale Motility of Objects: Application as "Smart Materials", Sensors, and NanodevicesADVANCED FUNCTIONAL MATERIALS, Issue 5 2007I. Willner Abstract Machinelike operations are common functions in biological systems, and substantial recent research efforts are directed to mimic such processes at the molecular or nanoscale dimensions. The present Feature Article presents three complementary approaches to design machinelike operations: by the signal-triggered mechanical shuttling of molecular components; by the signal-triggering of chemical processes on surfaces, resulting in mechanical motion of micro/nanoscale objects; and by the fuel-triggered motility of biomolecule,metal nanowire hybrid systems. The shuttling of molecular components on molecular wires assembled on surfaces in semirotaxane configurations using electrical or optical triggering signals is described. The control of the hydrophilic/hydrophobic surface properties through molecular shuttling or by molecular bending/stretching processes is presented. Stress generated on microelements, such as cantilevers, results in the mechanical deflection of the cantilever. The deposition of a redox-active polyaniline film on a cantilever allows the reversible electrochemically induced deflection and retraction of the cantilever by the electrochemical oxidation or reduction of the polymer film, respectively. A micro-robot consisting of the polypyrrole (PPy) polymer deposited on a multi-addressable configuration of electrodes is described. Au magnetic core/shell nanoparticles are incorporated into a polyaniline film, and the conductivity of the composite polymer is controlled by an external magnet. Finally, the synthesis of a hybrid nanostructure consisting of two actin filaments tethered to the two ends of a Au nanowire is described. The adenosine triphosphate (ATP)-fueled motility of the hybrid nanostructure on a myosin monolayer associated with a solid support is demonstrated. [source] Conformational Analysis of Molecular Machines: Internal Rotation and Enantiomerization in Triptycyl[3]heliceneCHEMPHYSCHEM, Issue 8 2008Miquel Llunell Dr. No independent rotation: Detailed analysis of the PES for triptycyl[3]helicene (see figure) shows that rotation around the helicene,triptycyl bond cannot be considered independently from other degrees of freedom when analyzing its stereodynamic behavior. The possibility of enantiomerization of the helicene pawl results in more complex dynamics than previously expected. [source] Deslipping of Ester Rotaxanes: A Cooperative Interplay of Hydrogen Bonding with Rotational BarriersEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 24 2003Petra Linnartz Abstract A series of rotaxanes has been synthesized which contain two ester groups in their axles. All rotaxanes bear the same tetralactam wheel. The kinetics of the de-slipping reaction of these rotaxanes were monitored in tetrachloroethane (TCE) and dimethyl sulfoxide (DMSO) resulting in the observation of a significant solvent effect. In TCE, two isomeric rotaxanes that differ merely with respect to the orientation of the ester groups show a remarkable difference in their deslipping behavior. When the ester carbonyl group is directly attached to the axle center piece, the rotaxane decomposes with a half life of ca. 10 h at 100 °C. The reverse orientation with the carbonyl group attached to the stopper blocks deslipping almost completely and a lower limit for the half life at 100 °C of 25,000 h was obtained. These results can be interpreted by inferring a cooperative action of hydrogen bonding between wheel and axle and differences in rotational barriers. Molecular modeling and AM1 calculations support this interpretation. The implications of these results for the determination of steric size and the optimization of molecular machines are discussed. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source] Mitochondrial preprotein translocases as dynamic molecular machinesFEMS YEAST RESEARCH, Issue 6 2006Martin Van Der Laan Abstract Proteomic studies have demonstrated that yeast mitochondria contain roughly 1000 different proteins. Only eight of these proteins are encoded by the mitochondrial genome and are synthesized on mitochondrial ribosomes. The remaining 99% of mitochondrial precursors are encoded within the nuclear genome and after their synthesis on cytosolic ribosomes must be imported into the organelle. Targeting of these proteins to mitochondria and their import into one of the four mitochondrial subcompartments , outer membrane, intermembrane space (IMS), inner membrane and matrix , requires various membrane-embedded protein translocases, as well as numerous chaperones and cochaperones in the aqueous compartments. During the last years, several novel protein components involved in the import and assembly of mitochondrial proteins have been identified. The picture that emerges from these exciting new findings is that of highly dynamic import machineries, rather than of regulated, but static protein complexes. In this review, we will give an overview on the recent progress in our understanding of mitochondrial protein import. We will focus on the presequence translocase of the inner mitochondrial membrane, the TIM23 complex and the presequence translocase-associated motor, the PAM complex. These two molecular machineries mediate the multistep import of preproteins with cleavable N-terminal signal sequences into the matrix or inner membrane of mitochondria. [source] The loose coupling mechanism in molecular machines of living cellsGENES TO CELLS, Issue 1 2000Fumio Oosawa Living cells have molecular machines for free energy conversion, for example, sliding machines in muscle and other cells, flagellar motors in bacteria, and various ion pumps in cell membranes. They are constructed from protein molecules and work in the nm (nanometer), pN (piconewton) and ms (millisecond) ranges, without inertia. In 1980s, a question was raised of whether the input,output or influx,efflux coupling in these molecular machines is tight or loose, and an idea of loose coupling was proposed. Recently, the long-distance multistep sliding of a single myosin head on an actin filament, coupled with the hydrolysis of one ATP molecule, was observed by Yanagida's group using highly developed techniques of optical microscopy and micromanipulation. This gave direct evidence for the loose coupling between the chemical reaction and the mechanical event in the sliding machine. In this review, I will briefly describe a historical overview of the input,output problem in the molecular machines of living cells. [source] Microcapsules Containing a Biomolecular Motor for ATP Biosynthesis,ADVANCED MATERIALS, Issue 15 2008Qiang He Abstract Over the past two decades, advances in modern biology and nanotechnology have enabled a rapid development in the design and building of biomimetic functional materials. ATP synthase is one of the most extensively studied molecular machines because it can be used as a rotary motor in the design of novel nanodevices and it can also continuously synthesize ATP in an artificial environment. A lot of research efforts have focused on assembling ATP synthase in biomimetic systems so that a complex cellular process can be constructed in a controllable manner. As we summarize here, layer-by-layer assembled microcapsules have proved to be a suitable cellular mimetic structure, which can be applied for engineering active biomimetic systems with a cellular process. An added benefit is that these assembled microcapsules can be used as bioenergy containers and thus ATP supply on demand. [source] Mesostructured Silica for Optical Functionality, Nanomachines, and Drug DeliveryJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2009Yaroslav Klichko Silica thin films and nanoparticles prepared using sol,gel chemistry are derivatized with active molecules to generate new functional materials. The mild conditions associated with sol,gel processing allow for the incorporation of a range of dopants including organic or inorganic dyes, biomolecules, surfactants, and molecular machines. Silica nanoparticles embedded with inorganic nanocrystals, and films containing living cells have also been synthesized. Silica templated with surfactants to create mesostructure contains physically and chemically different regions that can be selectively derivatized using defined techniques to create dynamic materials. Using two different techniques, donor,acceptor pairs can be doped into separated regions simultaneously and photo-induced electron transfer between the molecules can be measured. Mesoporous silica materials are also useful supports for molecular machines. Machines including snap-tops and nanoimpellers that are designed to control the release of guest molecules trapped within the pores are described. Mesoporous silica nanoparticles are promising materials for drug delivery and other biomedical applications because they are nontoxic and can be taken up by living cells. Through appropriate design and synthesis, multifunctional mesoporous silica nanoparticles for sophisticated bio-applications are created. [source] Low-molecular-weight post-translationally modified microcinsMOLECULAR MICROBIOLOGY, Issue 6 2007Konstantin Severinov Summary Microcins are a class of ribosomally synthesized antibacterial peptides produced by Enterobacteriaceae and active against closely related bacterial species. While some microcins are active as unmodified peptides, others are heavily modified by dedicated maturation enzymes. Low-molecular-weight microcins from the post-translationally modified group target essential molecular machines inside the cells. In this review, available structural and functional data about three such microcins , microcin J25, microcin B17 and microcin C7-C51 , are discussed. While all three low-molecular-weight post-translationally modified microcins are produced by Escherichia coli, inferences based on sequence and structural similarities with peptides encoded or produced by phylogenetically diverse bacteria are made whenever possible to put these compounds into a larger perspective. [source] Slicing a protease: Structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domainsPROTEIN SCIENCE, Issue 8 2006Tatyana V. Rotanova Abstract ATP-dependent Lon proteases are multi-domain enzymes found in all living organisms. All Lon proteases contain an ATPase domain belonging to the AAA+ superfamily of molecular machines and a proteolytic domain with a serine-lysine catalytic dyad. Lon proteases can be divided into two subfamilies, LonA and LonB, exemplified by the Escherichia coli and Archaeoglobus fulgidus paralogs, respectively. The LonA subfamily is defined by the presence of a large N-terminal domain, whereas the LonB subfamily has no such domain, but has a membrane-spanning domain that anchors the protein to the cytoplasmic side of the membrane. The two subfamilies also differ in their consensus sequences. Recent crystal structures for several individual domains and sub-fragments of Lon proteases have begun to illuminate similarities and differences in structure,function relationships between the two subfamilies. Differences in orientation of the active site residues in several isolated Lon protease domains point to possible roles for the AAA+ domains and/or substrates in positioning the catalytic residues within the active site. Structures of the proteolytic domains have also indicated a possible hexameric arrangement of subunits in the native state of bacterial Lon proteases. The structure of a large segment of the N-terminal domain has revealed a folding motif present in other protein families of unknown function and should lead to new insights regarding ways in which Lon interacts with substrates or other cellular factors. These first glimpses of the structure of Lon are heralding an exciting new era of research on this ancient family of proteases. [source] Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machinesBIOESSAYS, Issue 2 2010Emmanuel Derivery Abstract The Arp2/3 complex is a molecular machine that generates branched actin networks responsible for membrane remodeling during cell migration, endocytosis, and other morphogenetic events. This machine requires activators, which themselves are multiprotein complexes. This review focuses on recent advances concerning the assembly of stable complexes containing the most-studied activators, N-WASP and WAVE proteins, and the level of regulation that is provided by these complexes. N-WASP is the paradigmatic auto-inhibited protein, which is activated by a conformational opening. Even though this regulation has been successfully reconstituted in vitro with isolated N-WASP, the native dimeric complex with a WIP family protein has unique additional properties. WAVE proteins are part of a pentameric complex, whose basal state and activated state when bound to the Rac GTPase were recently clarified. Moreover, this review attempts to put together diverse observations concerning the WAVE complex in the conceptual frame of an in vivo assembly pathway that has gained support from the recent identification of a precursor. [source] A special issue on molecular machinesBIOESSAYS, Issue 12 2003Article first published online: 17 NOV 200 No abstract is available for this article. [source] A Mechanically Interlocked [3]Rotaxane as a Light-Harvesting Antenna: Synthesis, Characterization, and Intramolecular Energy TransferCHEMISTRY - A EUROPEAN JOURNAL, Issue 14 2009Jie-Yu Wang Abstract Mimicking photosynthesis: The concept of light-harvesting by using a mechanically interlocked [3]rotaxane is developed through synthesis and characterization. Our results provide a new candidate for light-harvesting systems and also open up the possibility of creating intelligent or controllable energy-collecting machines (see figure). A mechanically interlocked light-harvesting system [3]rotaxane A has been synthesized in high yield through Cu(I)-catalyzed azide,alkyne cycloaddition; the hexyl-substituted truxene units are introduced into the wheels as donors and an oligo(para -phenylenevinylene) (OPV) unit into the axis as the acceptor. The structure and the purity of [3]rotaxane A were confirmed by 1H and 13C,NMR spectroscopy and ESI HRMS. The azide,alkyne cycloaddition is demonstrated to be an efficient stoppering method in the synthesis of the rotaxane containing dibenzo[24]crown-8 and dibenzyl ammonium units. Detailed steady-state UV/Vis absorption, photoluminescent, and time-resolved fluorescence spectroscopy were performed to investigate the photophysical properties of [3]rotaxane A and its reference compounds in solution and as thin films. Even in dilute solution, efficient energy transfer from the truxene-functionalized wheels to the OPV-based axis, through the dibenzo[24]crown-8 and dibenzyl ammonium interaction, is observed in [3]rotaxane A. The unique topology of [3]rotaxane A not only efficiently promotes the intramolecular energy-transfer process, but also prevents intermolecular aggregation in the solid state. The new antenna system opens up the possibility of controllable light-harvesting molecular machines or other optoelectronic devices on the nanometer scale. [source] Versatile Self-Complexing Compounds Based on Covalently Linked Donor,Acceptor CyclophanesCHEMISTRY - A EUROPEAN JOURNAL, Issue 1 2005Yi Liu Dr. Abstract A range of covalently linked donor,acceptor compounds which contain 1) a hydroquinone (HQ) unit, 2) a 1,5-dioxynaphthalene (DNP) ring system, or 3) a tetrathiafulvalene (TTF) unit as the ,-donor, and 4) cyclobis(paraquat- p -phenylene) (CBPQT4+) as the ,-accepting tetracationic cyclophane were prepared and shown to operate as simple molecular machines. The ,-donating arms can be included inside the cyclophane in an intramolecular fashion by virtue of stabilizing noncovalent bonding interactions. What amounts to self-complexing/decomplexing equilibria were shown to be highly temperature dependent when the ,-donating arm contains either an HQ or DNP moiety. The thermodynamic parameters associated with the equilibria have been unraveled by using variable-temperature 1H NMR spectroscopy. The negative ,H° and ,S° values account for the fact that the "uncomplexed" conformation becomes the dominant species, since the entropy gain associated with the decomplexation process overcomes the enthalpy loss resulting from the breaking of the donor,acceptor interactions. The arm's in-and-out movements with respect to the linked cyclophanes can be arrested by installing a bulky substituent at the end of the arm. In the case of compounds carrying a DNP ring system in their side arm, two diastereoisomeric, self-complexing conformations are observed below 272 K in hexadeuterioacetone. By contrast, control over the TTF-containing arm's movement is more or less ineffective through the thermally sensitive equilibrium although it can be realized by chemical and electrochemical ways as a result of TTF's excellent redox properties. Such self-complexing compounds could find applications as thermo- and electroswitches. In addition, the thermochromism associated with the arm's movement could lead to some of the compounds finding uses as imaging and sensing materials. [source] pH-Controllable Supramolecular SystemsCHEMISTRY - AN ASIAN JOURNAL, Issue 3 2009Ken Cham-Fai Leung Prof. Abstract Proton, all that matters! This Focus Review surveys representative examples of pH-controllable supramolecular systems with interesting features and state-of-the-art applications, which can lead to the construction of meaningful molecular machines for electronic and biological applications that can be controlled by simple perturbation with acid and base. This Focus Review surveys representative examples of pH-controllable supramolecular systems with interesting features and state-of-the-art applications such as 1),conformational changes within individual molecules; 2),folding/unfolding of polymers; 3),simultaneous binding of cations and anions; 4),logic function; 5),ON,OFF switchable colorimetric sensing; 6),translocation of macrocycle-in-rotaxane molecules; 7),large-scale movement within molecules; and 8),regulation of the substrate flow in nanocontainers. In particular, systems will be discussed that involve: pH-induced conformational changes of a resorcinarene cavitand and a bis(iron porphyrin) complex; pH control in assembly and disassembly of supramolecular systems stabilized with different major noncovalent interactions; pH-driven movements of interlocked molecules involving rotaxanes, molecular elevators, and molecular muscles; and, finally, multicomponent supramolecular systems immobilized on solid supports as pH-responsive nanovalves for the controlled release of specific substrates. Recent advances in the understanding of pH-controllable supramolecular systems have led to the construction of meaningful molecular machines for electronic and biological applications that are amenable to control by simple perturbation with acids and bases. [source] Temperature-Dependent and Friction-Controlled Electrochemically Induced Shuttling Along Molecular Strings Associated with ElectrodesCHEMPHYSCHEM, Issue 10 2005Eugenii Katz Dr. Abstract The temperature and solvent composition dependence of the electrochemically stimulated rate of shuttling of the redox-active cyclophane, cyclobis(paraquat- p -phenylene), on a molecular string has been studied. The molecular string includes a ,-donor diiminebenzene-site that is associated on one side with an electrode, and stoppered on the other side with an adamantane unit. The cyclophane rests on the ,-donor site, owing to stabilizing ,-donor,acceptor interactions. Electrochemical reduction of the cyclophane units, to the bis-radical cation cyclophane, results in the shuttling of the reduced cyclophane towards the electrode, a process that is driven by the removal of the stabilizing donor,acceptor interactions, and the electrostatic attraction of the reduced product by the electrode. The latter process is energetically downhill, and is temperature-independent. Upon oxidation of the reduced cyclophane that is associated with the electrode, the energetically uphill shuttling of the oxidized cyclophane to the ,-donor site proceeds. The rate of this translocation process has been found to be temperature-dependent, and controlled by the solvent composition. The experimental results have been theoretically analyzed in terms of Kramers' molecular friction model. The theoretical fitting of the experimental results, using solutions of variable composition, reveals that the rate-constants for the uphill reaction in a pure aqueous solution follow the temperature-dependence of the viscosity of water. The results demonstrate the significance of friction phenomena in shuttling processes within molecular machines. [source] |