Home About us Contact | |||
Molecular Interactions (molecular + interaction)
Kinds of Molecular Interactions Terms modified by Molecular Interactions Selected AbstractsMolecular Interaction between a Gadolinium,Polyoxometalate and Human Serum AlbuminEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 34 2009Li Zheng Abstract Polyoxometalates (POMs) show promising antibacterial, antiviral (particularly anti-HIV), antitumor, and anticancer activities, but the mechanism of these potential therapeutic effects remains to be elucidated at the molecular level. The interaction between the Gd-containing tungstosilicate [Gd(,2 -SiW11O39)2]13, and human serum albumin (HSA) was studied by several techniques. Fluorescence spectroscopy showed an energy transfer between the single tryptophan residue of HSA and the POM. Circular dichroism led to the conclusion that the POM significantly altered the secondary structure of HSA. Isothermal titration calorimetry revealed an enthalpy-driven binding reaction between HSA and the POM, resulting in the formation of a 1:1 complex.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] Microstructure and Molecular Interaction in Glycerol Plasticized Chitosan/Poly(vinyl alcohol) Blending FilmsMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 10 2009Songmiao Liang Abstract Exploring some basic interactions in blending systems is of great significance for designing a blend with controlled structure and properties. This work attempts to analyze microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinyl alcohol) blends by atomic force microscopy, differential scanning calorimetry and ATR-FTIR spectroscopy. Our results show that the blending films are aggregated by spherical chitosan/poly(vinyl alcohol) blending nanoparticles. The size and aggregation behavior of these particles are closely related to glycerol content. The presence of glycerol gives rise to a continuous closing in Tg of poly(vinyl alcohol) and chitosan components, suggesting an improved miscibility of the blend. Strong hydrogen bonding interaction in the blend is observed and further distinguished by peak resolution. Moreover, more interesting evidence on the effect of glycerol in the blends is provided by monitoring the structure evolution of the blend at different blending steps using atomic force microscopy. The formation of strong hydrogen bonding network among glycerol molecules and polymer matrix was considered as the main driving force to result in the changes in the microstructure and miscibility of the blend. [source] Effect of Functionalized Carbon Nanotubes on Molecular Interaction and Properties of Polyurethane CompositesMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 19 2006Nanda Gopal Sahoo Abstract Summary: Functionalized MWNTs were incorporated into PU by solution mixing to improve the mechanical and thermal properties of composites. A homogeneous dispersion of MWNTs was successfully achieved in PU matrix as evidenced by scanning electron microscopy. It may be attributed to the hydrogen bonds existing between CO groups of hard segments of PU chains and COOH groups of the MWNT-COOH. The incorporation of the MWNTs effectively enhanced the crystallization of the PU matrix through heterogeneous nucleation, and the nucleation effect was more evident at 10 wt.-% functionalized MWNTs as compared to other composite systems. Mechanical properties of the PU-MWNTs composites were assessed as a function of MWNT concentration and dispersion of MWNT in PU matrix. The most significant improvement in mechanical properties was obtained, e.g., 740% increase in modulus and 180% increase in tensile strength over pure PU with 20% MWNT content. The thermal stability of composites due to thermal gravimetric measurements was significantly improved. A possible interaction of H-bonding existed between PU chain and MWNT-COOH. [source] Triple FRET: A tool for Studying Long-Range Molecular InteractionsCHEMPHYSCHEM, Issue 7 2003Elke Haustein Molecular traffic lights: A FRET cascade involving three spectrally suitable dyes (see picture) is not only feasible, but the effective distance can easily be increased to 100 Å and beyond; this was previously inaccessible with conventional FRET measurements. [source] Molecular interaction of neutral trehalase with other enzymes of trehalose metabolism in the fission yeast Schizosaccharomyces pombeFEBS JOURNAL, Issue 15 2002Teresa Soto Trehalose metabolism is an essential component of the stress response in yeast cells. In this work we show that the products of the principal genes involved in trehalose metabolism in Schizosaccharomyces pombe, tps1+ (coding for trehalose-6- P synthase, Tps1p), ntp1+ (encoding neutral trehalase, Ntp1p) and tpp1+ (that codes for trehalose-6- P phosphatase, Tpp1p), interact in vitro with each other and with themselves to form protein complexes. Disruption of the gene tps1+ blocks the activation of the neutral trehalase induced by heat shock but not by osmotic stress. We propose that this association may reflect the Tps1p-dependent requirement for thermal activation of trehalase. Data reported here indicate that following a heat shock the enzyme activity of trehalase is associated with Ntp1p dimers or trimers but not with either Ntp1p monomers or with complexes involving Tps1p. These results raise the possibility that heat shock and osmotic stress activate trehalase differentially by acting in the first case through an specific mechanism involving Tps1p,Ntp1p complexes. This study provides the first evidence for the participation of the catabolic enzyme trehalase in the structural framework of a regulatory macromolecular complex containing trehalose-6- P synthase in the fission yeast. [source] Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurinJOURNAL OF MOLECULAR RECOGNITION, Issue 4 2007Valentina De Grandis Abstract Molecular interaction between p53 tumor suppressor and the copper protein azurin (AZ) has been demonstrated to enhance p53 stability and hence antitumoral function, opening new perspectives in cancer treatment. While some experimental work has provided evidence for AZ binding to p53, no crystal structure for the p53,AZ complex was solved thus far. In this work the association between AZ and the p53 DNA-binding domain (DBD) was investigated by computational methods. Using a combination of rigid-body protein docking, experimental mutagenesis information, and cluster analysis 10 main p53 DBD,AZ binding modes were generated. The resulting structures were further characterized by molecular dynamics (MD) simulations and free energy calculations. We found that the highest scored docking conformation for the p53 DBD,AZ complex also yielded the most favorable free energy value. This best three-dimensional model for the complex was validated by using a computational mutagenesis strategy. In this structure AZ binds to the flexible L1 and s7,s8 loops of the p53 DBD and stabilizes them through protein,protein tight packing interactions, resulting in high degree of both surface matching and electrostatic complementarity. Copyright © 2007 John Wiley & Sons, Ltd. [source] Molecular interactions of fission yeast Skp1 and its role in the DNA damage checkpointGENES TO CELLS, Issue 5 2004Anna Lehmann Skp1 is a central component of the E3 ubiquitin ligase SCF (Skp1-Cullin-1- F -box). It forms an adapter bridge between Cullin-1 and the substrate-determining component, the F-box protein. In order to establish the role of Skp1, a temperature sensitive (ts) screen was carried out using mutagenic PCR (polymerase chain reaction) and 9 independent ts mutants were isolated. Mapping the mutated residues on the 3-D structure of human Skp1 suggested that the mutants would be compromised in binding to F-box proteins but not Cullin-1 (Pcu1). In order to assess the binding properties of ts Skp1, 12 F-box proteins and Pcu1 were epitope-tagged, and co-immunoprecipitation performed. This systematic analysis showed that ts Skp1 retains binding to Pcu1. However, binding to three specific F-box proteins, essential Pof1, Pof3 involved in maintaining genome integrity, and nonessential Pof10, was reduced. skp1ts cells exhibit a G2 cell cycle delay, which is attributable to activation of the DNA damage checkpoint. Intriguingly, contrary to pof3 mutants, in which this checkpoint is required for survival, checkpoint abrogation in skp1ts suppresses a G2 delay and furthermore almost rescues the ts phenotype. The activation mechanism of the DNA damage checkpoint therefore differs between pof3, and skp1ts, implicating a novel role for Skp1 in the checkpoint-signalling cascade. [source] Molecular interactions of the neuronal GPI-anchored lipocalin LazarilloJOURNAL OF MOLECULAR RECOGNITION, Issue 5 2008Diego Sanchez Abstract Lazarillo, a glycoprotein involved in axon growth and guidance in the grasshopper embryo, is the only member of the lipocalin family that is attached to the cell surface by a GPI anchor. Recently, the study of Lazarillo homologous genes in Drosophila and mouse has revealed new functions in the regulation of lifespan, stress resistance and neurodegeneration. Here we report an analysis of biochemical properties of Lazarillo to gain insight into the molecular basis of its physiological function. Recombinant forms of the grasshopper protein were expressed in two different systems to test: (1) potential binding of several hydrophobic ligands; (2) protein,protein homophilic interactions; and (3) whether interaction with the function-blocking mAb 10E6 interferes with ligand binding. We tested 10 candidate ligands (retinoic acid, heme, bilirubin, biliverdin, ecdysterone, juvenile hormone, farnesol, arachidonic acid, linoleic acid and palmitic acid), and monitored binding using electrophoretic mobility shift, absorbance spectrum, and fluorimetry assays. Our work indicates binding to heme and retinoic acid, resulting in increased electrophoretic mobility, as well as to fatty acids, resulting in multimerization. Retinoic acid and fatty acids binding were confirmed by fluorescence titration, and heme binding was confirmed with absorbance spectrum assays. We demonstrate that Lazarillo oligomerizes in solution and can form clusters in the plasma membrane when expressed and GPI-anchored to the cell surface, however it is unable to mediate cell,cell adhesion. Finally, by ligand-mAb competition experiments we show that ligand-binding alone cannot be the key factor for Lazarillo to perform its function during axonal growth in the grasshopper embryo. Copyright © 2008 John Wiley & Sons, Ltd. [source] Understanding surfaces and buried interfaces of polymer materials at the molecular level using sum frequency generation vibrational spectroscopyPOLYMER INTERNATIONAL, Issue 5 2007Zhan Chen Abstract This paper reviews recent progress in the studies on polymer surfaces/interfaces using sum frequency generation (SFG) vibrational spectroscopy. SFG theory, technique, and some experimental details have been presented. The review is focused on the SFG studies on buried interfaces involving polymer materials, such as polymer,water interfaces and polymer,polymer interfaces. Molecular interactions between polymer surfaces and adhesion promoters as well as biological molecules such as proteins and peptides have also been elucidated using SFG. This review demonstrates that SFG is a powerful technique to characterize molecular level structural information of complicated polymer surfaces and interfaces in situ. Copyright © 2006 Society of Chemical Industry [source] Molecular interactions of isoxazolcurcumin with human serum albumin: Spectroscopic and molecular modeling studiesBIOPOLYMERS, Issue 2 2009Bijaya Ketan Sahoo Abstract Curcumin is a nontoxic natural product with diverse pharmacological potencies. We report the interaction of a potent synthetic derivative of curcumin, isoxazolcurcumin (IOC) with human serum albumin (HSA) using various biophysical methods. The observed fluorescence quenching of HSA by IOC is due to a complex formation by a static quenching process with a quenching constant of the order of 105M,1. The binding affinity and the number of binding sites were obtained from a Scatchard analysis. Thermodynamics reveals that the interaction is entropy driven with predominantly hydrophobic forces. From the observed Förster-type fluorescence resonance energy transfer (FRET), the donor (Trp 214 in HSA) to acceptor (IOC) distance is calculated to be 3.2 nm. The conformational changes of HSA due to the interaction were investigated qualitatively from synchronous fluorescence spectra along with a quantitative estimation of the secondary structure from Fourier Transform Infrared (FTIR) and circular dichroism (CD) spectroscopies. Molecular docking studies were performed to obtain information on the possible residues involved in the interaction process, and changes in accessible surface area of the interacting residues were calculated. The preferred binding site of IOC was analyzed by ligand displacement experiments with 1-anilino-8-naphthalenesulfonate (ANS) and warfarin-bound HSA. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 108,119, 2009. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] Molecular interactions between Plasmodium and its insect vectorsCELLULAR MICROBIOLOGY, Issue 11 2002R. E. Sinden Summary Our understanding of the intricate interactions between the malarial parasite and the mosquito vector is complicated both by the number and diversity of parasite and vector species, and by the experimental inaccessibility of phenomena under investigation. Steady developments in techniques to study the parasite in the mosquito have recently been augmented by methods to culture in their entirety the sporogonic stages of some parasite species. These, together with the new saturation technologies, and genetic transformation of both parasite and vector will permit penetrating studies into an exciting and largely unknown area of parasite,host interactions, an understanding of which must result in the development of new intervention strategies. This microreview highlights key areas of current basic molecular interest, and identifies numerous lacunae in our knowledge that must be filled if we are to make rational decisions for future control strategies. It will conclude by trying to explain why in the opinion of this reviewer understanding malaria,mosquito interactions may be critical to our future attempts to limit a disease of growing global importance. [source] Molecular crystal global phase diagrams.ACTA CRYSTALLOGRAPHICA SECTION A, Issue 1 2010In previous parts of this series [Mettes et al. (2004). Acta Cryst. A60, 621,636; McClurg & Keith (2010). Acta Cryst. A66, 38,49] a method for constructing global phase diagrams (GPDs) for molecular crystals was developed and the method was applied to single-component ordered crystal structures of tetrahedral molecules. GPDs are useful for visualizing what types of crystal structures a given molecule may assume depending on molecular form/interaction. Their construction uses group-theoretical methods which enumerate all possible symmetry breakings during a statistical mechanical high-to-low temperature search. In this work these results are expanded upon by outlining a method to determine a sufficiently rich parameter space to represent the experimentally observed crystal structures in a data set derived from the Cambridge Structural Database. This is significant because previous work (Mettes et al., 2004) did not specify the number of parameters needed for GPDs. Although there are suggestions in the literature that thousands of parameters are required to adequately describe tetrahedral molecule intermolecular potentials, it is found that 15 parameters are sufficient to represent the structures of the test data. The origin of this difference and its implications for determining GPD parameter values from a more detailed intermolecular potential and for interpreting GPD parameter values are discussed. [source] Crystal structure of a ternary mononuclear copper (II) complex: 4-chloro-3-methyl-6[(N-2-picolyl)-1,-iminomethyl]phenolato copper(II)perchlorateCRYSTAL RESEARCH AND TECHNOLOGY, Issue 5 2006S. M. Malathy Sony Abstract The complex crystallizes in monoclinic space group P21/n with unit cell parameters a = 7.295(4), b = 19.627(5), c = 12.770(4) Å, , = 101.25(4)º, V = 1793.2(12) Å3, Z = 4, , = 1.684 Mg/m3 at T = 293(2)K. The structure was solved by Patterson method and refined by full-matrix least-squares procedures to final R = 0.0387 using 2906 observed reflections. The asymmetric unit of the complex contains a mononuclear tridentate ligand, a perchlorate group and a methanol molecule. The compound crystallizes as parallel layers of polymeric complex bridged through perchloarate groups. The molecular CuN2OO,O,,2 chromophore involves an elongated rhombic octahedral structure and the Cu-ligand bond shows greater disparity. The five-membered chelate ring and the pyridine ring lie in the same plane while the six membered chelate ring assumes sofa conformation. A strong O-H,O inter molecular interaction plays a key role in the formation of dimer along b-axis. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] The pallial basal ganglia pathway modulates the behaviorally driven gene expression of the motor pathwayEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2007Lubica Kubikova Abstract The discrete neural network for songbird vocal communication provides an effective system to study neural mechanisms of learned motor behaviors in vertebrates. This system consists of two pathways , a vocal motor pathway used to produce learned vocalizations and a vocal pallial basal ganglia loop used to learn and modify the vocalizations. However, it is not clear how the loop exerts control over the motor pathway. To study the mechanism, we used expression of the neural activity-induced gene ZENK (or egr-1), which shows singing-regulated expression in a social context-dependent manner: high levels in both pathways when singing undirected and low levels in the lateral part of the loop and in the robust nucleus of the arcopallium (RA) of the motor pathway when singing directed to another animal. Here, we show that there are two parallel interactive parts within the pallial basal ganglia loop, lateral and medial, which modulate singing-driven ZENK expression of the motor pathway nuclei RA and HVC, respectively. Within the loop, the striatal and pallial nuclei appear to have opposing roles; the striatal vocal nucleus lateral AreaX is required for high ZENK expression in its downstream nuclei, particularly during undirected singing, while the pallial vocal lateral magnocellular nucleus of the anterior nidopallium is required for lower expression, particularly during directed singing. These results suggest a dynamic molecular interaction between the basal ganglia pathway and the motor pathway during production of a learned motor behavior. [source] Aberrant trajectory of thalamocortical axons associated with abnormal localization of neurocan immunoreactivity in the cerebral neocortex of reeler mutant miceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2005Hong-Peng Li Abstract We examined the molecular mechanisms underlying the formation of the thalamocortical pathway in the cerebral neocortex of normal and reeler mutant mice. During normal development of the mouse neocortex, thalamic axons immunoreactive for the neural cell adhesion molecule L1 rarely invaded the cortical plate and ran centered in the subplate which is immunoreactive for neurocan, a brain-specific chondroitin sulfate proteoglycan. On the other hand, in homozygous reeler mutant mice, thalamic axons took an aberrant course to run obliquely through the cortical plate. Injection of bromodeoxyuridine at embryonic day 11 specifically labeled subplate neurons in normal mice, whilst in the reeler neocortex it labeled cells scattered in the cortical plate as well as in the superficial layer (superplate). Neurocan immunoreactivity was associated with the bromodeoxyuridine-positive cells in the superplate, as well as being present in oblique bands within the cortical plate, along which L1-bearing thalamic axons preferentially ran. The present results support our previous hypothesis proposed for normal rats that a heterophilic molecular interaction between L1 and neurocan is involved in determining the thalamocortical pathway within the neocortical anlage [T. Fukuda et al. (1997)Journal of Comparative Neurology, 382, 141,152]. [source] Thermal stability and molecular interaction of polyurethane nanocomposites prepared by in situ polymerization with functionalized multiwalled carbon nanotubesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008R. N. Jana Abstract Polyurethane (PU) nanocomposites were prepared through conventional and in situ methods with multiwalled carbon nanotubes (MWNTs) functionalized with poly(,-caprolactone). The thermal degradation and stability of PU,MWNT nanocomposites were investigated with nonisothermal thermogravimetry and were explained in terms of the interaction between MWNTs and PU molecules with Fourier transform infrared spectroscopy. The difference in thermal stability between the conventional and in situ nanocomposites was also compared. The thermal degradation of all the nanocomposite samples took place in two stages and followed a first-order reaction. The degradation temperature of the in situ nanocomposites was higher than that of the conventional nanocomposites with the same loading of MWNTs. The activation energy at 10% degradation and the half-life period were also higher in the in situ nanocomposites compared to the conventional nanocomposites. Such higher thermal stability of the in situ nanocomposites was ascribed to covalent bond formation between MWNTs and PU chains, which could result in better dispersion of MWNTs in the PU matrix for the in situ nanocomposites than for the conventional nanocomposites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] BT-IgSF, a novel immunoglobulin superfamily protein, functions as a cell adhesion moleculeJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005Hideki Harada BT-IgSF is a newly identified cell surface glycoprotein belonging to the immunoglobulin superfamily (IgSF). We have previously shown that the expression of the BT-IgSF gene was highly restricted to brain and testis, and its transcript was detected in both neurons and glial cells. In this study, to explore its function, we generated cells overexpressing BT-IgSF proteins and analyzed their phenotypes. We found that the constitutive expression of BT-IgSF in the myeloid leukemia cell line TF-1 -fms did not alter the growth rates, but caused the formation of large cell aggregates. The cell aggregates were also observed with mutant BT-IgSF lacking its cytoplasmic tail, the amino acid sequences of which were highly conserved among the BT-IgSF subgroup proteins. The neutralizing antibody to ,1 integrin did not diminish the cell aggregate formation. These results indicate that BT-IgSF functions as a cell adhesion molecule, that its cytoplasmic tail is not essential for the function, and that ,1 integrin is not involved in the function. We confirmed the cell adhesion function using NIH/3T3 fibroblastic cells expressing BT-IgSF in an inducible system. Flow cytometric analyses with the cells demonstrated that the cell aggregation mediated by BT-IgSF was through homophilic molecular interaction, and in a Ca2+/Mg2+ -independent manner. Coupled with its restricted pattern of the expression, the cell adhesion-inducing function of BT-IgSF suggests a role of the cell surface molecule in the development/function of the central nervous system and spermatogenesis. © 2005 Wiley-Liss, Inc. [source] Theoretical study of the prion protein based on the fragment molecular orbital methodJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 16 2009Takeshi Ishikawa Abstract We performed fragment molecular orbital (FMO) calculations to examine the molecular interactions between the prion protein (PrP) and GN8, which is a potential curative agent for prion diseases. This study has the following novel aspects: we introduced the counterpoise method into the FMO scheme to eliminate the basis set superposition error and examined the influence of geometrical fluctuation on the interaction energies, thereby enabling rigorous analysis of the molecular interaction between PrP and GN8. This analysis could provide information on key amino acid residues of PrP as well as key units of GN8 involved in the molecular interaction between the two molecules. The present FMO calculations were performed using an original program developed in our laboratory, called "Parallelized ab initio calculation system based on FMO (PAICS)". © 2009 Wiley Periodicals, Inc. J Comput Chem 2009 [source] Application of Atomic Force Microscopy as a Nanotechnology Tool in Food ScienceJOURNAL OF FOOD SCIENCE, Issue 4 2007Hongshun Yang ABSTRACT:, Atomic force microscopy (AFM) provides a method for detecting nanoscale structural information. First, this review explains the fundamentals of AFM, including principle, manipulation, and analysis. Applications of AFM are then reported in food science and technology research, including qualitative macromolecule and polymer imaging, complicated or quantitative structure analysis, molecular interaction, molecular manipulation, surface topography, and nanofood characterization. The results suggested that AFM could bring insightful knowledge on food properties, and the AFM analysis could be used to illustrate some mechanisms of property changes during processing and storage. However, the current difficulty in applying AFM to food research is lacking appropriate methodology for different food systems. Better understanding of AFM technology and developing corresponding methodology for complicated food systems would lead to a more in-depth understanding of food properties at macromolecular levels and enlarge their applications. The AFM results could greatly improve the food processing and storage technologies. [source] Emulsion synthesis of nanoparticles containing PEDOT using conducting polymeric surfactant: Synergy for colloid stability and intercalation dopingJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 7 2008Chi-an Dai Abstract Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is a widely used conductive aqueous dispersion synthesized by using emulsion polymerization method. To further enhance its solution processability and conductivity of PEDOT derivatives, we proposed to replace the nonconductive PSS with conductive poly[2-(3thienyl)-ethoxy-4-butylsulfonate] (PTEB) as surfactant for the emulsion polymerization of PEDOT. The reaction involved colloid stabilization and doping in one step, and yielded PEDOT:PTEB composite nanoparticles with high electrical conductivity. Contrary to its counterpart containing nonconductive surfactant, PEDOT: PTEB showed increasing film conductivity with increasing PTEB concentration. The result demonstrates the formation of efficient electrical conduction network formed by the fully conductive latex nanoparticles. The addition of PTEB for EDOT polymerization significantly reduced the size of composite particles, formed stable spherical particles, enhanced thermal stability, crystallinity, and conductivity of PEDOT:PTEB composite. Evidence from UV,VIS and FTIR measurement showed that strong molecular interaction between PTEB and PEDOT resulted in the doping of PEDOT chains. X-ray analysis further demonstrated that PTEB chains were intercalated in the layered crystal structure of PEDOT. The emulsion polymerization of EDOT using conducting surfactant, PTEB demonstrated the synergistic effect of PTEB on colloid stability and intercalation doping of PEDOT during polymerization resulting in significant conductivity improvement of PEDOT composite nanoparticles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2536,2548, 2008 [source] Microstructure and Molecular Interaction in Glycerol Plasticized Chitosan/Poly(vinyl alcohol) Blending FilmsMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 10 2009Songmiao Liang Abstract Exploring some basic interactions in blending systems is of great significance for designing a blend with controlled structure and properties. This work attempts to analyze microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinyl alcohol) blends by atomic force microscopy, differential scanning calorimetry and ATR-FTIR spectroscopy. Our results show that the blending films are aggregated by spherical chitosan/poly(vinyl alcohol) blending nanoparticles. The size and aggregation behavior of these particles are closely related to glycerol content. The presence of glycerol gives rise to a continuous closing in Tg of poly(vinyl alcohol) and chitosan components, suggesting an improved miscibility of the blend. Strong hydrogen bonding interaction in the blend is observed and further distinguished by peak resolution. Moreover, more interesting evidence on the effect of glycerol in the blends is provided by monitoring the structure evolution of the blend at different blending steps using atomic force microscopy. The formation of strong hydrogen bonding network among glycerol molecules and polymer matrix was considered as the main driving force to result in the changes in the microstructure and miscibility of the blend. [source] A Self-Assembling Polythiophene Functionalised with a Cysteine MoietyMACROMOLECULAR RAPID COMMUNICATIONS, Issue 9 2003Adele Mucci Abstract A new copolymer bearing a cysteine moiety, designed for molecular interaction, metal-ion detection, and chiral recognition, was synthesised starting from the dibromo derivative of methyl N -(tert -butoxycarbonyl)- S -thien-3-ylcysteinate and distannylthiophene through a Stille coupling reaction. UV-vis spectroscopy, circular dichroism, NMR spectroscopy, and gel permeation chromatography analyses evidenced that this polymer is able to form self-assembling structures, through the formation of a hydrogen-bond network, not only in the solid state but also in solution. [source] Investigation of molecular interaction within biological macromolecular complexes by mass spectrometryMEDICINAL RESEARCH REVIEWS, Issue 3 2006Satoko Akashi Abstract The advent of electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) has accelerated structural studies of biological macromolecular complexes. At present, mass spectrometry can provide accurate mass values not only of individual biological macromolecules but also of their assemblies. Furthermore, it can also give information on the interface sites of the biological macromolecular complexes. The present article focuses on the role of mass spectrometry in the investigation of biological molecular interactions, such as protein,protein, protein,DNA, and protein,ligand interactions, which play essential roles in various biological events. © 2006 Wiley Periodicals, Inc. [source] Intracellular membrane trafficking in bone resorbing osteoclastsMICROSCOPY RESEARCH AND TECHNIQUE, Issue 6 2003Mika Mulari Abstract There is ample evidence now that the two major events in bone resorption, namely dissolution of hydroxyapatite and degradation of the organic matrix, are performed by osteoclasts. The resorption cycle involves several specific cellular activities, where intracellular vesicular trafficking plays a crucial role. Although details of these processes started to open up only recently, it is clear that vesicular trafficking is needed in several specific steps of osteoclast functioning. Several plasma membrane domains are formed during the polarization of the resorbing cells. Multinucleated osteoclasts create a tight sealing to the extracellular matrix as a first indicator of their resorption activity. Initial steps of the sealing zone formation are ,v,3 -integrin mediated, but the final molecular interaction(s) between the plasma membrane and mineralized bone matrix is still unknown. A large number of acidic intracellular vesicles then fuse with the bone-facing plasma membrane to form a ruffled border membrane, which is the actual resorbing organelle. The formation of a ruffled border is regulated by a small GTP-binding protein, rab7, which indicates the late endosomal character of the ruffled border membrane. Details of specific membrane transport processes in the osteoclasts, e.g., the formation of the sealing zone and transcytosis of bone degradation products from the resorption lacuna to the functional secretory domain remain to be clarified. It is tempting to speculate that specific features of vesicular trafficking may offer several potential new targets for drug therapy of bone diseases. Microsc. Res. Tech. 61:496,503, 2003. © 2003 Wiley-Liss, Inc. [source] The structural view of bacterial translocation-specific chaperone SecB: implications for functionMOLECULAR MICROBIOLOGY, Issue 2 2005Jiahai Zhou Summary SecB is a molecular chaperone that functions in bacterial post-translational protein translocation pathway. It maintains newly synthesized precursor polypeptide chains in a translocation-competent state and guides them to the translocon via its high-affinity binding to the ligand as well as to the membrane-embedded ATPase SecA. Recent advances in elucidating the structures of SecB have enabled the examination of protein function in the structural context. Structures of SecB from both Haemophilus influenzae and Escherichia coli support the early two-subsite polypeptide-binding model. In addition, the detailed molecular interaction between SecB and SecA was revealed by a structure of SecB in complex with the C-terminal zinc-containing domain of SecA. These observations explain the dual role of SecB plays in the translocation pathway, as a molecular chaperone and a specific targeting factor. A model of SecB,SecA complex suggests that the binding of SecA to SecB changes the conformation of the polypeptide binding sites in the chaperone, enabling transfer of precursor polypeptides from SecB to SecA. Recent studies also show the presence of a second zinc-independent SecB binding site in SecA and the new interaction might contribute to the function of SecB. [source] Protein microarray analysis identifies cyclic nucleotide phosphodiesterase as an interactor of Nogo-ANEUROPATHOLOGY, Issue 1 2010Kenta Sumiyoshi Nogo-A, a neurite outgrowth inhibitor, is expressed exclusively on oligodendrocytes and neurons in the CNS. The central domain of Amino-Nogo spanning amino acids 567,748 in the human Nogo-A designated NIG, mediates persistent inhibition of axonal outgrowth and induces growth cone collapse by signaling through an as yet unidentified NIG receptor. We identified 82 NIG-interacting proteins by screening a high-density human protein microarray composed of 5000 proteins with a recombinant NIG protein as a probe. Following an intensive database search, we selected 12 neuron/oligodendrocyte-associated NIG interactors. Among them, we verified the molecular interaction of NIG with 2,, 3,-cyclic nucleotide 3,-phosphodiesterase (CNP), a cell type-specific marker of oligodendrocytes, by immunoprecipitation and cell imaging analysis. Although CNP located chiefly in the cytoplasm of oligodendrocytes might not serve as a cell-surface NIG receptor, it could act as a conformational stabilizer for the intrinsically unstructured large segment of Amino-Nogo. [source] Neuromyelitis optica/Devic's disease: Gene expression profiling of brain lesionsNEUROPATHOLOGY, Issue 6 2008Jun-ichi Satoh Neuromyelitis optica (NMO), also known as Devic's disease, is an inflammatory demyelinating disease that affects selectively the optic nerves and the spinal cord, possibly mediated by an immune mechanism distinct from that of multiple sclerosis (MS). Recent studies indicate that NMO also involves the brain. Here, we studied gene expression profile of brain lesions of a patient with NMO by using DNA microarray, along with gene expression profile of the brains of Parkinson disease and amyotrophic lateral sclerosis patients. We identified more than 200 genes up-regulated in NMO brain lesions. The top 20 genes were composed of the molecules closely associated with immune regulation, among which marked up-regulation of interferon gamma-inducible protein 30 (IFI30), CD163, and secreted phosphoprotein 1 (SPP1, osteopontin) was validated by real time RT-PCR, Northern blot and Western blot analysis. Pathologically, CD68+ macrophages and microglia expressed intense immunoreactivities for IFI30 and CD163 in NMO lesions, consisting of inflammatory demyelination, axonal loss, necrosis, cavity formation, and vascular fibrosis. KeyMolnet, a bioinformatics tool for analyzing molecular interaction on the curated knowledge database, suggested that the molecular network of up-regulated genes in NMO brain lesions involves transcriptional regulation by the nuclear factor-kappaB (NF-,B) and B-lymphocyte-induced maturation protein-1 (Blimp-1). These results suggest that profound activation of the macrophage-mediated proinflammatory immune mechanism plays a pivotal role in development of NMO brain lesions. [source] Characterization and design of interphases in glass fiber reinforced polyproplyenePOLYMER COMPOSITES, Issue 3 2000E. Mäder Bond strength between reinforcing fibers and polymer matrices can be controlled in two ways: 1) by intensification of molecular interaction at the interface and 2) by creation of a strong transition layer (interphase) between the components. In this paper, we consider the possibilities of controlling interfacial strength by means of target-oriented variation of structure, thickness and strength of the interphase artificially created between the glass fiber and the polypropylene matrix. The bond strength was measured using a continuously monitored microbond test, including recording the crack length as a function of the load applied. The measured interfacial strengths correlated to the macromechanical properties of glass fiber reinforced polypropylene. The interphase design provided simultaneous increase in the tensile strength and the impact toughness of the composites. [source] Nanostructured polyolefins/clay composites: role of the molecular interaction at the interfacePOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 6 2008Elisa Passaglia Abstract The extent of interphase interactions between polymer phase and inorganic particles is the driving force addressing the preparation/properties design in the field of the corresponding micro- and nanocomposites. In the case of preparation of nanocomposites based on polyolefins (POs) and inorganic compounds as potentially nanodispersed phase, the use of a PO with proper functional groups is necessary for the interface adhesion and stabilization of the nanostructured morphology. According to this approach, ethylene/propylene copolymers with a different propylene content were used for the preparation of nanocomposites through melt mixing with organophilic montmorillonites (OMMT). By taking into account the important role of functionalities grafted onto POs, two different synthetic approaches were compared here: (1) the dispersion of the inorganic filler was obtained by using previously functionalized POs bearing carboxylate groups as matrices; (2) the nanocomposites were prepared by performing contemporaneously the functionalization of POs (by using maleic anhydride (MAH) and/or diethyl maleate (DEM)) and the dispersion of the filler in a one-step process. The morphology of the nanocomposites as well as the variation of solubility and glass transition temperature (Tg) of the PO matrix were evaluated and tentatively discussed with reference to functionalization degrees, structure of PO, and preparation procedure. Copyright © 2008 John Wiley & Sons, Ltd. [source] Weak interactions and molecular recognition in systems involving electron transfer proteinsTHE CHEMICAL RECORD, Issue 4 2001Shun Hirota Abstract Electrostatic interactions and other weak interactions between amino acid side chains on protein surfaces play important roles in molecular recognition, and the mechanism of their intermolecular interactions has gained much interest. We established that charged peptides are useful for investigating the molecular recognition character of proteins and their molecular interaction induced structural changes. Positively charged lysine peptides competitively inhibited electron transfer from reduced cytochrome f (cyt f) or cytochrome c (cyt c) to oxidized plastocyanin (PC), due to neutralization of the negatively charged site of PC by formation of PC,lysine peptide complexes. Lysine peptides also inhibited electron transfer from cyt c to cytochrome c peroxidase. Likewise, negatively charged aspartic acid peptides interacted with the positively charged sites of cyt f and cyt c, and competitively inhibited electron transfer from reduced cyt f or cyt c to oxidized PC and from [Fe(CN)6]4, to oxidized cyt c. Changes in the geometry and a shift to a higher redox potential of the active site Cu of PC on oligolysine binding were detected by spectroscopic and electrochemical measurements, owing to the absence of absorption in the visible region for lysine peptides. Structural and redox potential changes were also observed for cyt f and cyt c by interaction with aspartic acid peptides. ©2001 John Wiley & Sons, Inc. and The Japan Chemical Journal Forum Chem Rec 1:290,299, 2001 [source] |