Home About us Contact | |||
Molecular Differentiation (molecular + differentiation)
Selected AbstractsmtDNA analysis reveals the ongoing speciation on Greek populations of Microtus (Terricola) thomasi (Arvicolidae, Rodentia)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2008GIORGOS TRYFONOPOULOS The present article extends our previous work on the phylogenetic history of Microtus (Terricola) thomasi, analysing cytochrome b, 12S rRNA, 16S rRNA and the control region in 65 Greek populations. The analysis revealed three clades: one grouping the populations from Peloponnisos (Southern Greece); the second, the populations from Agios (Ag.) Stefanos and Evvoia island (Central East Greece); and the third, all the remaining populations with no geographical substructure. Genetic distances were low for most populations, with only the populations of Evvoia and Ag. Stefanos being substantially distant. Thus, although this species has a recent colonization history and probably descends from a highly polymorphic ancestor, a monophyletic and highly differentiated lineage is formed in Greece and is distributed in Ag. Stefanos and Evvoia. Molecular differentiation, distinct geographical distribution and restriction of gene flow between this lineage and the rest of the Greek populations provide evidence for its probable subspecific status, Microtus (Tericola) thomasi atticus. A possible mechanism leading the differentiation process of the proposed subspecies is suggested, based on the displacement of this species in central Greece by its congeneric, probably better-fitted Microtus (Microtus) guentheri and the subsequent separation of Ag. Stefanos and Evvoia from the remaining Greek populations. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95, 117,130. [source] The cortex in multidimensional space: where do cortical areas come from?DEVELOPMENTAL SCIENCE, Issue 2 2001Marcy A. Kingsbury The concept of a cortical ,area' as a discrete phylogenetic, developmental and computational unit is evaluated. Evidence including the comparative organization of the forebrain in vertebrates, the organization of cortex in different mammals, the scaling of the areas of the isocortex in mammals, and the early molecular differentiation of the cortex all suggest a special status for the primary sensory cortical areas, particularly the visual cortex. Furthermore, the overlapping gradients of early molecular expression and the patterning of cortical structure and connectivity by thalamic input suggest a new view of cortical organization that is different from the traditional view of a developmentally mosaic cortex; this view proposes that distinct cortical areas arise combinatorily from the multiple overlapping processes imposed upon the developing cortex. [source] Neuronal activity and neurotrophic factors regulate GAD-65/67 mRNA and protein expression in organotypic cultures of rat visual cortexEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2003Silke Patz Abstract Environmental factors are known to regulate the molecular differentiation of neocortical interneurons. Their class-defining transmitter synthetic enzymes are the glutamic acid decarboxylases (GAD); yet, fairly little is known about the developmental regulation of transcription and translation of the GAD-65/67 isoforms. We have characterized the role of neuronal activity, neurotrophins and afferent systems for GAD-65/67 expression in visual cortex in organotypic cultures (OTC) compared with in vivo in order to identify cortex-intrinsic regulatory mechanisms. Spontaneously active OTC prepared at postnatal day 0 displayed from 10 days in vitro (DIV) onwards 12,14% GAD-65/GAD-67 neurons similar to in vivo. However, GAD-65 mRNA was higher, whereas GAD-67 protein was lower, than in vivo. During the first week neurotrophins increased whereas the Trk receptor inhibitor K252a and MEK inhibitors decreased both GAD mRNAs and proteins. After 10 DIV GAD expression no longer depended on neurotrophin signalling. Activity-deprived OTC revealed only 6% GAD-67 neurons and mRNA and protein were reduced by 50%. GAD-65 mRNA was less reduced, but protein was reduced by half, suggesting translational regulation. Upon recovery of activity GAD mRNAs, cell numbers, and both proteins quickly returned to normal and these ,adult' levels were resistant to late-onset deprivation. In 20 DIV activity-deprived OTC, only neurotrophin 4 increased GAD-65/67 mRNAs, rescued the percentage of GAD-67 neurons and increased both proteins in a TrkB-dependent manner. Activity deprivation had thus shifted the period of neurotrophin sensitivity to older ages. The results suggested neuronal activity as a major regulator differentially affecting transcription and translation of the GAD isoforms. The early presence of neuronal activity promoted the GAD expression in OTC to a neurotrophin-independent state suggesting that neurotrophins play a context-dependent role. [source] Two Genetically Distinct Populations of Colletotrichum gloeosporioides Penz.JOURNAL OF PHYTOPATHOLOGY, Issue 3 2005Causing Anthracnose Disease of Yam (Dioscorea spp.) Abstract Variation within Colletotrichum gloeosporioides, the causal agent of yam anthracnose disease, is still poorly defined and this hinders breeding for resistance. Two morphotypes of C. gloeosporioides, designated slow-growing grey (SGG) and fast-growing salmon (FGS), are associated with anthracnose disease of yam in Nigeria. The morphotypes are distinguishable based on colony and conidial morphology, growth rate, virulence, as well as vegetative compatibility, but molecular differentiation of SGG and FGS strains is needed to facilitate epidemiological studies. Denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified small subunit (18S) rDNA fragments, and microsatellite-primed PCR (MP-PCR) genomic fingerprinting were employed to provide a basis for molecular differentiation of the morphotypes. DGGE analysis revealed patterns that clearly differentiated isolates of the aggressive defoliating SGG from the moderately virulent non-defoliating FGS strains. Genetic analysis based on 52 MP-PCR markers revealed highly significant differentiation between the SGG and FGS populations on yam (GST = 0.22; Nei's genetic identity = 0.85; , = 0.28, P < 0.001), indicating that the SGG and FGS morphotypes represent genetically differentiated populations. The results of the molecular typing using DGGE and MP-PCR analyses were consistent with the disease phenotype caused by the two morphotypes. Consequently, these molecular techniques might be used, at least partly, to replace time-consuming virulence studies on yam. [source] Speciation on the Azores islands: congruent patterns in shell morphology, genital anatomy, and molecular markers in endemic land snails (Gastropoda, Leptaxinae)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009KURT JORDAENS Morphological data, in combination with molecular data, may provide invaluable insights into speciation processes on archipelagos. Land snails offer ample opportunities to evalutate adaptive and non-adaptive speciation scenarios. However, studies investigating processes of differentiation and speciation on the Azores are scarce. The present study comprises a morphometrical analysis of shell and genital characters in a group of Azorean land snails (Pulmonata, Leptaxinae). Geographical isolation appears to be an important mechanism underlying morphological and molecular differentiation in the Azorean Leptaxini, instead of adaptive radiation through ecological differentiation. Nevertheless, we could not exclude the occurrence of ecological speciation on the oldest island (Santa Maria) where two species that markedly differ in shell-shape co-occur. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 166,176. [source] Phylogeny of Mysis (Crustacea, Mysida): history of continental invasions inferred from molecular and morphological dataCLADISTICS, Issue 6 2005Asta Audzijonyt We studied the phylogenetic history of opossum shrimps of the genus Mysis Latreille, 1802 (Crustacea: Mysida) using parsimony analyses of morphological characters, DNA sequence data from mitochondrial (16S, COI and CytB) and nuclear genes (ITS2, 18S), and eight allozyme loci. With these data we aimed to resolve a long-debated question of the origin of the non-marine (continental) taxa in the genus, i.e., "glacial relicts" in circumpolar postglacial lakes and "arctic immigrants" in the Caspian Sea. A simultaneous analysis of the data sets gave a single tree supporting monophyly of all continental species, as well as monophyly of the taxa from circumpolar lakes and from the Caspian Sea. A clade of three circumarctic marine species was sister group to the continental taxa, whereas Atlantic species had more distant relationships to the others. Small molecular differentiation among the morphologically diverse endemic species from the Caspian Sea suggested their recent speciation, while the phenotypically more uniform "glacial relict" species from circumpolar lakes (Mysis relicta group) showed deep molecular divergences. For the length-variable ITS2 region both direct optimization and a priori alignment procedures gave similar topologies, although the former approach provided a better overall resolution. In terms of partitioned Bremer support (PBS), mitochondrial protein coding genes provided the largest contribution (83%) to the total tree resolution. This estimate however, appears to be partly spurious, due to the concerted inheritance of mitochondrial characters and probable cases of introgression or ancestral polymorphism. © The Willi Hennig Society 2005. [source] |