Home About us Contact | |||
Molecular Architecture (molecular + architecture)
Selected AbstractsAn Investigation on the Synthesis of New Molecular Architectures from the Cyclotrimerisation of exo - and endo -Benzotricyclo[4.2.1.02,5]noneneEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 1 2004Arif Dastan Abstract We have performed an investigation on the cyclotrimerisation of molecules having exo - and endo -benzotricyclo[4.2.1.02,5]nonene skeletons (3 and 4) with the aim of producing their respective cyclotrimers 2 that feature unusual geometries and electronic properties. Activation towards the cyclotrimerisation reaction was performed using the vic -bromostannyl vinyl derivatives and was accomplished under copper-mediated or palladium-catalysed reaction conditions. While the exo isomer 3 proved to be quite reactive and afforded variable amounts of the syn and anti cyclotrimers, the endo isomer 4 turned out to be quite resistant to cyclotrimerisation because of steric hindrance. Only dimers and acyclic trimers were obtained from reactions using this substrate. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] ChemInform Abstract: Rapid Access to Complex Molecular Architectures via o-Azaquinones.CHEMINFORM, Issue 36 2001K. C. Nicolaou Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Molecular architecture of myelinated peripheral nerves is supported by calorie restriction with agingAGING CELL, Issue 2 2009Sunitha Rangaraju Summary Peripheral nerves from aged animals exhibit features of degeneration, including marked fiber loss, morphological irregularities in myelinated axons and notable reduction in the expression of myelin proteins. To investigate how protein homeostatic mechanisms change with age within the peripheral nervous system, we isolated Schwann cells from the sciatic nerves of young and old rats. The responsiveness of cells from aged nerves to stress stimuli is weakened, which in part may account for the observed age-associated alterations in glial and axonal proteins in vivo. Although calorie restriction is known to slow the aging process in the central nervous system, its influence on peripheral nerves has not been investigated in detail. To determine if dietary restriction is beneficial for peripheral nerve health and glial function, we studied sciatic nerves from rats of four distinct ages (8, 18, 29 and 38 months) kept on an ad libitum (AL) or a 40% calorie restricted diet. Age-associated reduction in the expression of the major myelin proteins and widening of the nodes of Ranvier are attenuated by the dietary intervention, which is paralleled with the maintenance of a differentiated Schwann cell phenotype. The improvements in nerve architecture with diet restriction, in part, are underlined by sustained expression of protein chaperones and markers of the autophagy,lysosomal pathway. Together, the in vitro and in vivo results suggest that there might be an age-limit by which dietary intervention needs to be initiated to elicit a beneficial response on peripheral nerve health. [source] N -Isopropylacrylamide/2-Hydroxyethyl Methacrylate Star Diblock Copolymers: Synthesis and Thermoresponsive BehaviorMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 24 2006Zhiqiang Cao Abstract Summary: Tri-arm star diblock copolymers, poly(2-hydroxyethyl methacrylate)- block -poly(N -isopropylacrylamide) [P(HEMA- b -NIPAAm)] with PHEMA and PNIPAAm as separate inner and outer blocks were synthesized via a two-step ATRP at room temperature. The formation, molecular weight and distribution of polymers were examined, and the kinetics of the reaction was monitored. The PDI of PHEMA was shown to be lower, indicating well-controlled polymerization of trifunctional macro-initiator and resultant star copolymers. The thermoresponsive behavior of diblock copolymer aqueous solution were studied by DSC, phase diagrams, temperature-variable 1H NMR, TEM and DLS. The results revealed that introducing a higher ratio of HEMA into copolymers could facilitate the formation of micelles and the occurrence of phase transition at lower temperatures. TEM images showed that I-(HEMA40 -NIPAAm320)3 solutions developed into core-shell micelles with diameters of approximately 100 nm. I-(HEMA40 -NIPAAm320)3 was used as a representative example to elucidate the mechanism underlying temperature-induced phase transition of copolymer solution. In this study we proposed a three-stage transition process: (1) separately dispersed micelles state at ,17,22,°C; (2) aggregation and fusion of micelles at ,22,29,°C; (3) sol-gel transition of PNIPAAm segments at ,29,35,°C, and serious syneresis of shell layers. Molecular architecture of Poly(HEMA- b -NIPAAm). [source] Molecular architecture of DesV from Streptomyces venezuelae: A PLP-dependent transaminase involved in the biosynthesis of the unusual sugar desosaminePROTEIN SCIENCE, Issue 5 2007E. Sethe Burgie Abstract Desosamine is a 3-(dimethylamino)-3,4,6-trideoxyhexose found in certain macrolide antibiotics such as the commonly prescribed erythromycin. Six enzymes are required for its biosynthesis in Streptomyces venezuelae. The focus of this article is DesV, which catalyzes the PLP-dependent replacement of a 3-keto group with an amino functionality in the fifth step of the pathway. For this study the three-dimensional structures of both the internal aldimine and the ketimine intermediate with glutamate were determined to 2.05 Å resolution. DesV is a homodimer with each subunit containing 12 ,-helical regions and 12 ,-strands that together form three layers of sheet. The structure of the internal aldimine demonstrates that the PLP-cofactor is held in place by residues contributed from both subunits (Asp 164 and Gln 167 from Subunit I and Tyr 221 and Asn 235 from Subunit II). When the ketimine intermediate is present in the active site, the loop defined by Gln 225 to Ser 228 from Subunit II closes down upon the active site. The structure of DesV is similar to another sugar-modifying enzyme referred to as PseC. This enzyme is involved in the biosynthesis of pseudaminic acid, which is a sialic acid-like nonulosonate found in the flagellin of Helicobacter pylori. In the case of PseC, however, the amino group is transferred to the C-4 rather than the C-3 position. Details concerning the structural analysis of DesV and a comparison of its molecular architecture to that of PseC are presented. [source] Self-Organization of Dipolar 4,4,-Disubstituted 2,2,-Bipyridine Metal Complexes into Luminescent Lamellar Liquid CrystalsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 19 2003Daniela Pucci Abstract Mononuclear cis -dichloro complexes, [LnMCl2], with different metal centres (PtII, NiII, and ZnII) and a series of palladium and platinum derivatives, [L2MX2], in which chloride groups are replaced with iodide, bromide, and azide ligands, have been synthesized from 4,4,-disubstituted-2,2,-bipyridines. Upon complexation of these non-mesogenic ligands, the peculiar structural arrangement, characterized by intermolecular associations of the new derivatives, induces mesomorphism in most [L2MX2] complexes, confirming the importance of coordination chemistry in metal-mediated formation of liquid crystals. Single crystal X-ray structures have been determined for dihexadecyl 2,2,-bipyridyl-4,4,-dicarboxylatopalladium and -zinc dichloride derivatives. Both the metal centres and the ancillary ligands have been varied to use dipole coupling as a tool to control molecular architecture: thermal, as well as spectroscopic properties, depend strongly upon molecular dipolar interactions. Tunable red and blue emitters based on PdII and PtII, both in solution and in the solid state, have been obtained. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source] Proteolytically Degradable Photo-Polymerized Hydrogels Made From PEG,Fibrinogen Adducts,ADVANCED ENGINEERING MATERIALS, Issue 6 2010Daniel Dikovsky Abstract We develop a biomaterial based on protein,polymer conjugates where poly(ethylene glycol) (PEG) polymer chains are covalently linked to multiple thiols on denatured fibrinogen. We hypothesize that conjugation of large diacrylate-functionalized linear PEG chains to fibrinogen could govern the molecular architecture of the polymer network via a unique protein,polymer interaction. The hypothesis is explored using carefully designed shear rheometry and swelling experiments of the hydrogels and their precursor PEG/fibrinogen conjugate solutions. The physical properties of non-cross-linked and UV cross-linked PEGylated fibrinogen having PEG molecular weights ranging from 10 to 20,kDa are specifically investigated. Attaching multiple hydrophilic, functionalized PEG chains to the denatured fibrinogen solubilizes the denatured protein and enables a rapid free-radical polymerization cross-linking reaction in the hydrogel precursor solution. As expected, the conjugated protein-polymer macromolecular complexes act to mediate the interactions between radicals and unsaturated bonds during the free-radical polymerization reaction, when compared to control PEG hydrogels. Accordingly, the cross-linking kinetics and stiffness of the cross-linked hydrogel are highly influenced by the protein,polymer conjugate architecture and molecular entanglements arising from hydrophobic/hydrophilic interactions and steric hindrances. The proteolytic degradation products of the protein,polymer conjugates proves to be were different from those of the non-conjugated denatured protein degradation products, indicating that steric hindrances may alter the proteolytic susceptibility of the PEG,protein adduct. A more complete understanding of the molecular complexities associated with this type of protein-polymer conjugation can help to identify the full potential of a biomaterial that combines the advantages of synthetic polymers and bioactive proteins. [source] Expression of muscle-related genes and two MyoD genes during amphioxus notochord developmentEVOLUTION AND DEVELOPMENT, Issue 5 2003Aki Urano Summary The notochord is one of the diagnostic features of the phylum Chordata. Despite the similarities in the early morphogenetic patterns of the notochords of various chordates, they are strikingly distinct from one another at the histological level. The amphioxus notochord is one example of an evolutionary novelty because it is made up of muscle cells. Our previous expressed sequence tag analysis, targeting messenger RNAs expressed in the adult amphioxus notochord, demonstrated that many muscle-related genes are expressed there. To characterize amphioxus notochord cells and to gain insights into the myogenic program in the notochord, we determined the spatial and temporal expre-ssion patterns of these muscle-related genes during amphioxus development. We found that BbNA1 (notochord actin), Amphi-Trop I (troponin I), Amphi-TPmyosin (tropo-myosin), Amphi-MHC2 (myosin heavy chain), Amphi-nMRLC (notochord-specific myosin regulatory light chain), Amphi-nTitin/MLCK (notochord-specific titin/myosin light chain kinase), Amphi-MLP/CRP3 (muscle LIM protein), and Amphi-nCalponin (notochord-specific calponin) are expres-sed with characteristic patterns in notochord cells, including the central cells, dorsally located cells, and ventrally located cells, suggesting that each notochord cell has a unique molecular architecture that may reflect its function. In addition, we characterized two MyoD genes (Amphi-MyoD1 and Amphi-MyoD2) to gain insight into the genetic circuitry governing the formation of the notochord muscle. One of the MyoD genes (Amphi-MyoD2) is expressed in the central notochord cells, and the coexistence of Amphi-MyoD2 transcripts along with the Amphi-MLP/CRP3 transcripts implies the participation of Amphi-MyoD2 in the myogenic program in the notochord muscle. [source] Evolutionary divergence of valosin-containing protein/cell division cycle protein 48 binding interactions among endoplasmic reticulum-associated degradation proteinsFEBS JOURNAL, Issue 5 2009Giacomo Morreale Endoplasmic reticulum (ER)-associated degradation (ERAD) is a cell-autonomous process that eliminates large quantities of misfolded, newly synthesized protein, and is thus essential for the survival of any basic eukaryotic cell. Accordingly, the proteins involved and their interaction partners are well conserved from yeast to mammals, and Saccharomyces cerevisiae is widely used as a model system with which to investigate this fundamental cellular process. For example, valosin-containing protein (VCP) and its yeast homologue cell division cycle protein 48 (Cdc48p), which help to direct polyubiquitinated proteins for proteasome-mediated degradation, interact with an equivalent group of ubiquitin ligases in mouse and in S. cerevisiae. A conserved structural motif for cofactor binding would therefore be expected. We report a VCP-binding motif (VBM) shared by mammalian ubiquitin ligase E4b (Ube4b),ubiquitin fusion degradation protein 2a (Ufd2a), hydroxymethylglutaryl reductase degradation protein 1 (Hrd1),synoviolin and ataxin 3, and a related sequence in Mr 78 000 glycoprotein,Amfr with slightly different binding properties, and show that Ube4b and Hrd1 compete for binding to the N-terminal domain of VCP. Each of these proteins is involved in ERAD, but none has an S. cerevisiae homologue containing the VBM. Some other invertebrate model organisms also lack the VBM in one or more of these proteins, in contrast to vertebrates, where the VBM is widely conserved. Thus, consistent with their importance in ERAD, evolution has developed at least two ways to bring these proteins together with VCP,Cdc48p. However, the differing molecular architecture of VCP,Cdc48p complexes indicates a key point of divergence in the molecular details of ERAD mechanisms. [source] In vitro expansion of DNA triplet repeats with bulge binders and different DNA polymerasesFEBS JOURNAL, Issue 18 2008Di Ouyang The expansion of DNA repeat sequences is associated with many genetic diseases in humans. Simple bulge DNA structures have been implicated as intermediates in DNA slippage within the DNA repeat regions. To probe the possible role of bulged structures in DNA slippage, we designed and synthesized a pair of simple chiral spirocyclic compounds [Xi Z, Ouyang D & Mu HT (2006) Bioorg Med Chem Lett16, 1180,1184], DDI-1A and DDI-1B, which mimic the molecular architecture of the enediyne antitumor antibiotic neocarzinostatin chromophore. Both compounds strongly stimulated slippage in various DNA repeats in vitro. Enhanced slippage synthesis was found to be synchronous for primer and template. CD spectra and UV thermal stability studies supported the idea that DDI-1A and DDI-1B exhibited selective binding to the DNA bulge and induced a significant conformational change in bulge DNA. The proposed mechanism for the observed in vitro expansion of long DNA is discussed. [source] Characterization of Xenopus egg membrane microdomains containing uroplakin Ib/III complex: roles of their molecular interactions for subcellular localization and signal transductionGENES TO CELLS, Issue 2 2007A.K.M. Mahbub Hasan A single-transmembrane protein uroplakin III (UPIII) and its tetraspanin binding-partner uroplakin Ib (UPIb) are members of the UP proteins that were originally identified in mammalian urothelium. In Xenopus laevis eggs, these proteins: xUPIII and xUPIb, are components of the cholesterol-enriched membrane microdomains or "rafts" and involved in the sperm,egg membrane interaction and subsequent egg activation signaling via Src tyrosine kinase at fertilization. Here, we investigate whether the xUPIII-xUPIb complex is in close proximity to CD9, a tetraspanin that has been implicated in the sperm,egg fusion in the mouse and GM1, a ganglioside typically enriched in egg rafts. Preparation of the egg membrane microdomains using different non-ionic detergents (Brij 98 and Triton X-100), chemical cross-linking, co-immunoprecipitation, in vitro kinase assay and in vitro fertilization experiments demonstrated that GM1, but not CD9, is in association with the xUPIII-xUPIb complex and contributes to the sperm-dependent egg activation. Transfection experiments using HEK293 cells demonstrated that xUPIII and xUPIb localized efficiently to the cholesterol-dependent membrane microdomains when they were co-expressed, whereas co-expression of xUPIII and CD9, instead of xUPIb, did not show this effect. Furthermore, xUPIII and xUPIb were shown to suppress kinase activity of the wild type, but not a constitutively active form of, Xenopus Src protein co-expressed in HEK293 cells. These results provide novel insight into the molecular architecture of the egg membrane microdomains containing xUPIII, xUPIb and Src, which may contribute to the understanding of sperm,egg interaction and signaling during Xenopus fertilization. [source] Structural basis of MHC class I recognition by natural killer cell receptorsIMMUNOLOGICAL REVIEWS, Issue 1 2001Mark W. Sawicki Summary: Natural killer (NK)-cell function is regulated by NK receptors that recognize MHC class I (MHC-I) molecules on target cells. Two structurally distinct families of NK receptors have been identified, the immunoglobulin-like family (killer cell immunoglobulin-like receptors (KIRs), leukocyte immunoglobulin-like receptors (LIRs)) and the C-type lectin-like family (Ly49, CD94/NKG2A, NKG2D, CD69). Recently, the three-dimensional structures of several NK receptors were determined, in free form or bound to MHC-I. These include those of unbound KIRs, NKG2D, CD69, LIR-1 and the CD94 subunit of the CD94/NKG2A heterodimer. Together, these structures define the basic molecular architecture of both the immunoglobulin-like and C-type lectin-like families of NK receptors. In addition, crystal structures have been reported for the complex between Ly49A and H-2Dd, and for KIR2DL2 bound to HLA-Cw3. The complex structures provide a framework for understanding MHC-I recognition by NK receptors from both families and reveal striking differences in the nature of this recognition, despite the receptors' functional similarity. This research was supported, in part, by National Institutes of Health grants R01 AI47900 and R37 36900 (RAM) and a fellowship from the Cancer Research Institute (MWS). We are grateful to DW Wolan and IA Wilson for providing coordinates of NKG2D prior to publication, and to members of our laboratories for encouragement. [source] Organometallic Complexes for Nonlinear Optics.ADVANCED MATERIALS, Issue 22 2009An alkynylruthenium dendrimer exhibits two-photon absorption behavior below 1000,nm, and a nonlinear increase in nonlinearity upon dendrimer growth. Beyond 1000,nm, it undergoes 3PA-induced photochemistry. Its nonlinear optical performance is an order of magnitude greater than that of similar organic dendrimers, demonstrating the performance enhancement possible upon incorporation of metal centers into a molecular architecture. [source] Complementarity of small-angle neutron and X-ray scattering methods for the quantitative structural and dynamical specification of dendritic macromoleculesJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3-1 2003Alexander I. Kuklin The structural characteristics of polycarbosilane dendrimers with different molecular architecture were determined in solutions by small angle neutron and X-ray scattering. The same linear dimensions were sized up for the dendrimers both in benzene and chloroform. A solvent molecules penetration inside dendrimer structure in amount up to 30 vol.% was found from the comparison of the partial and effective scattering volume for the dendrimers in solution. [source] Structural determination of ethylene-propylene-diene rubber (EPDM) containing high degree of controlled long-chain branchingJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2009Susanta Mitra Abstract This work highlights an attempt to characterize the degree and nature of long-chain branching (LCB) in an unknown sample of ethylene-propylene-diene rubber (EPDM). Two EPDM rubbers selected for this study were comparable in comonomer compositions but significantly different with respect to molar mass and the presence of LCB. Both rubbers contained 5-ethylidene-2-norbornene (ENB) as diene. Solution cast films of pure EPDM samples were used for different characterization techniques. 1H-NMR, and 13C-NMR were used for assessing the comonomer ratios and LCB. Size exclusion chromatography (SEC) equipped with triple detector system was used to determine the molar mass (both absolute and relative) and polydispersity index (PDI). Presence of branching was also detected using sec-viscometry. Rheological analysis has also been used for characterizing LCB. Finally, on the basis of the experimental findings and the available theories, an attempt was made to identify the chemical nature and degree of LCB. This study reveals the possibility of detailed characterization of molecular architecture of EPDM containing LCB by comparing with an essentially linear EPDM in light of an existing theory. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Highly Ordered Interstitial Water Observed in Bone by Nuclear Magnetic Resonance,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2005Erin E Wilson Abstract NMR was used to study the nanostructure of bone tissue. Distance measurements show that the first water layer at the surface of the mineral in cortical bone is structured. This water may serve to couple the mineral to the organic matrix and may play a role in deformation. Introduction: The unique mechanical characteristics of bone tissue have not yet been satisfactorily connected to the exact molecular architecture of this complex composite material. Recently developed solid-state nuclear magnetic resonance (NMR) techniques are applied here to the mineral component to provide new structural distance constraints at the subnanometer scale. Materials and Methods: NMR dipolar couplings between structural protons (OH, and H2O) and phosphorus (PO4) or carbon (CO3) were measured using the 2D Lee-Goldburg Cross-Polarization under Magic-Angle Spinning (2D LG-CPMAS) pulse sequence, which simultaneously suppresses the much stronger proton-proton dipolar interactions. The NMR dipolar couplings measured provide accurate distances between atoms, e.g., OH and PO4 in apatites. Excised and powdered femoral cortical bone was used for these experiments. Synthetic carbonate (,2-4 wt%)-substituted hydroxyapatite was also studied for structural comparison. Results: In synthetic apatite, the hydroxide ions are strongly hydrogen bonded to adjacent carbonate or phosphate ions, with hydrogen bond (O-H) distances of ,1.96 Å observed. The bone tissue sample, in contrast, shows little evidence of ordered hydroxide. Instead, a very ordered (structural) layer of water molecules is identified, which hydrates the small bioapatite crystallites through very close arrangements. Water protons are ,2.3-2.55 Å from surface phosphorus atoms. Conclusions: In synthetic carbonated apatite, strong hydrogen bonds were observed between the hydroxide ions and structural phosphate and carbonate units in the apatite crystal lattice. These hydrogen bonding interactions may contribute to the long-range stability of this mineral structure. The biological apatite in cortical bone tissue shows evidence of hydrogen bonding with an ordered surface water layer at the faces of the mineral particles. This structural water layer has been inferred, but direct spectroscopic evidence of this interstitial water is given here. An ordered structural water layer sandwiched between the mineral and the organic collagen fibers may affect the biomechanical properties of this complex composite material. [source] A molecular recognition paradigm: promiscuity associated with the ligand,receptor interactions of the activin members of the TGF-, superfamilyJOURNAL OF MOLECULAR RECOGNITION, Issue 5 2005Hooi Hong Keah Abstract The structure,function properties of the pleiotropic activins and their relationship to other members of the transforming growth factor-, superfamily of proteins are described. In order to highlight the molecular promiscuity of these growth factors, emphasis has been placed on molecular features associated with the recognition by activin A and the bone morphogenic proteins of the corresponding extracellular domains of the ActRI and ActRII receptors. The available evidence suggests that the homodimeric activin A in its various functional roles has the propensity to fulfill key tasks in the regulation of mammalian cell behaviour, through coordination of numerous transcriptional and translational processes. Because of these profound effects, under physiologically normal conditions, activin A levels are closely controlled by a variety of binding partners, such as follistatin-288 and follistatin-315, ,2 -macroglobulin and other proteins. Moreover, the subunits of other members of the activin subfamily, such as activin B or activin C, are able to form heterodimers with the activin A subunit, thus providing a further avenue to positively or negatively control the physiological concentrations of activin A that are available for interaction with specific receptors and induction of cell signaling events. Based on data from X-ray crystallographic studies and homology modeling experiments, the molecular architecture of the ternary receptor,activin ligand complexes has been dissected, permitting rationalization in structural terms of the pattern of interactions that are the hallmark of this protein family. Copyright © 2005 John Wiley & Sons, Ltd. [source] Synthesis of well-defined photoresist materials by SET-LRPJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 10 2010Sven Fleischmann Abstract Single electron transfer-living radical polymerization (SET-LRP) provides an excellent tool for the straightforward synthesis of well-defined macromolecules. Heterogeneous Cu(0)- catalysis is employed to synthesize a novel photoresist material with high control over the molecular architecture. Poly(,-butyrolactone methacrylate)- co -(methyladamantly methacrylate) was synthesized. Kinetic experiments were conducted demonstrating that both monomers, ,-butyrolactone methacrylate (GBLMA) and methyl adamantly methacrylate (MAMA), are successfully homopolymerized. In both cases polymerization kinetic is of first order and the molecular weights increase linearly with conversion. The choice of a proper solvent was decisive for the SET-LRP process and organic solvent mixtures were found to be most suitable. Also, the kinetic of the copolymerization of GBLMA and MAMA was investigated. Following first order kinetics in overall monomer consumption and exhibiting a linear relationship between molecular weights and conversion a "living" process was established. This allowed for the straightforward synthesis of well-defined photoresist polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2251,2255, 2010 [source] Effect of molecular architecture and size of mesogen on phase behavior and photoactive properties of photoactive liquid crystalline hyperbranched polyester epoxies containing benzylidene moietyJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 2 2008V. Srinivasa Rao Abstract A series of photoactive liquid crystalline linear and hyperbranched polyester epoxies were synthesized by polyaddition of photoactive bis benzylidene alkanone diol monomers and terephthalic acid and trimesic acid respectively with good yield. The effect of molecular architecture (linear and hyperbranched), size of mesogenic unit (cyclic and acyclic units) on the physicochemical, thermal, mesogenic, and photoactive properties of hyperbranched polymers were studied and compared. Degree of branching of hyperbranched polymers was found to be in the range of 0.46,0.49. Monomers containing cyclic moieties only exhibited nematic mesophase, while all polymers exhibited typical nematic mesophase. Intermolecular photo cycloaddition reaction was studied by ultraviolet,visible spectra (UV,vis) and NMR spectroscopy and photo viscosity measurement of UV irradiated polymer solutions. Faster photo induced behavior of hyperbranched polymers containing acyclic alkanone moiety, as compared to polymers containing cycloalkanone moieties, was observed. The change in the refractive index was found to be in the range of 0.02,0.024. Substantial variation of refractive index indicates that this polymer could be used for optical recording. All the polymers were also found to be fluorescent in nature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 552,563, 2008 [source] Effect of dendritic architecture on localized free volume of poly(ether ketone)s as probed by positron annihilation spectroscopyJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2004Seung-Yeop Kwak Model poly(ether ketone)s (PEKs) with architectural variations were studied by positron annihilation lifetime spectroscopy (PALS) to estimate the average void sizes on a sub-nanometer scale, in conjunction with the hyperbranched (H-), the linear (L-), and their 50:50 block combination (HLH-) structures. The PALS distribution confirmed the unique molecular architecture of the hyperbranched polymer, consisting of an interior cavity space formed by loosely linked core and chain ends of relatively tighter free volume space. [source] Recent progress on the molecular organization of myelinated axonsJOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2002Steven S. Scherer Abstract The structure of myelinated axons was well described 100 years ago by Ramón y Cajal, and now their molecular organization is being revealed. The basal lamina of myelinating Schwann cells contains laminin-2, and their abaxonal/outer membrane contains two laminin-2 receptors, ,6,4 integrin and dystroglycan. Dystroglycan binds utrophin, a short dystrophin isoform (Dp116), and dystroglycan-related protein 2 (DRP2), all of which are part of a macromolecular complex. Utrophin is linked to the actin cytoskeleton, and DRP2 binds to periaxin, a PDZ domain protein associated with the cell membrane. Non-compact myelin,found at incisures and paranodes,contains adherens junctions, tight junctions, and gap junctions. Nodal microvilli contain F-actin, ERM proteins, and cell adhesion molecules that may govern the clustering of voltage-gated Na+ channels in the nodal axolemma. Nav1.6 is the predominant voltage-gated Na+ channel in mature nerves, and is linked to the spectrin cytoskeleton by ankyrinG. The paranodal glial loops contain neurofascin 155, which likely interacts with heterodimers composed of contactin and Caspr/paranodin to form septate-like junctions. The juxtaparanodal axonal membrane contains the potassium channels Kv1.1 and Kv1.2, their associated ,2 subunit, as well as Caspr2. Kv1.1, Kv1.2, and Caspr2 all have PDZ binding sites and likely interact with the same PDZ binding protein. Like Caspr, Caspr2 has a band 4.1 binding domain, and both Caspr and Caspr2 probably bind to the band 4.1B isoform that is specifically found associated with the paranodal and juxtaparanodal axolemma. When the paranode is disrupted by mutations (in cgt -, contactin -, and Caspr -null mice), the localization of these paranodal and juxtaparanodal proteins is altered: Kv1.1, Kv1.2, and Caspr2 are juxtaposed to the nodal axolemma, and this reorganization is associated with altered conduction of myelinated fibers. Understanding how axon-Schwann interactions create the molecular architecture of myelinated axons is fundamental and almost certainly involved in the pathogenesis of peripheral neuropathies. [source] Processability and mechanical properties of commercial PVC plastisols containing low-environmental-impact plasticizersJOURNAL OF VINYL & ADDITIVE TECHNOLOGY, Issue 3 2009Paola Persico Preliminary results are presented concerning the use of less-toxic plasticizers such as dioctyl adipate (DOA) and acetyl tributyl citrate (ATBC) in plastisol formulations for rotational molding technology. The DOA and ATBC plasticizers have been studied by comparing the effects of their content, molecular architecture, and polarity on the rheological behavior of liquid plastic systems and on the mechanical properties of the ultimate products prepared with PVCs having different particle sizes and molecular-weight distributions. Rheological tests have confirmed the differences in solvent power of the diethylhexyl phthalate (DOP), DOA, and ATBC plasticizers. The glass transition temperatures measured on rotomolded samples have shown that the use of ATBC leads to a more nearly rigid system as a consequence of the branched structure and polarity of this plasticizer when compared with DOA. Mechanical tests carried out on final products after natural and forced environmental aging revealed a slight decrease in their performance. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers [source] Comparative Study of the Solid,Liquid Interface Behavior of Amphiphilic Block and Block-Like CopolymersMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 3-4 2009Nikolay Bulychev Abstract Amphiphilic block and "block-like" copolymers based on poly(isobornyl acrylate) and poly(acrylic acid) were used as stabilizers for hydrophilic (titanium dioxide) and hydrophobic (copper phthalocyanine) pigments. As reflected by the dispersion stabilities and electrokinetic sonic amplitude (ESA) measurements, the molecular architecture of the copolymer is of great importance for its interaction with the pigment surface. It was observed that irrespective of polymer composition, block-like copolymers exhibit lower stabilization ability and quite different adsorption behavior in comparison to block copolymers with sharp block boundaries. Models for the adsorption behavior of both block and block-like copolymers are proposed. [source] Organoclay Nanocomposites from Ethylene,Acrylic Acid CopolymersMACROMOLECULAR MATERIALS & ENGINEERING, Issue 10 2006Sara Filippi Abstract Summary: A study of the structure,property relationships for nanocomposites prepared by melt compounding from ethylene,acrylic acid copolymers of varied composition and molecular architecture, and organoclays modified with different ammonium ions has been made by DSC, POM, SEM, TEM, WAXD, and rheological and mechanical tests. Within the series of clays investigated, the best levels of dispersion were displayed by those organically modified with quaternary ammonium ions containing two long alkyl tails. The relevant nanocomposites were shown to possess mixed exfoliated and intercalated morphology. The spacing of the intercalated clay stacks, most of which comprise few silicate layers, was found to be independent of clay loading, in the range of 2,50 phr, and to change with the molecular architecture of the matrix polymer. An indication that the excess surfactant present in some of the clays, and the organic material added in others to expand the interlayer spacing, were expelled from the clay galleries during melt blending and acted as plasticisers for the matrix polymer, was obtained from WAXD and rheological characterisations. TEM micrograph of the nanocomposite of EAA1 with 11 phr of 15A. [source] Processability and Properties of Re-Graded, Photo-Oxidized Post-Consumer Greenhouse FilmsMACROMOLECULAR MATERIALS & ENGINEERING, Issue 10 2005Francesco Paolo La Mantia Abstract Summary: The recycling of post-consumer plastics leads, in general, to secondary materials having properties worse than those of the reclaimed material and certainly worse than those of the same virgin polymer. This is because of the degradation undergone by the objects during their use and because of the thermo-mechanical degradation undergone during the reprocessing operations. The change of the molecular architecture is responsible for this worsening of properties. The use of stabilizing systems can slow the degradation during the melt processing but cannot give any improvement of the final properties of the material. In order to enhance the properties of the recycled plastics, some rebuilding of the molecular structure is necessary. The use of suitable additives can enlarge the molecular weight distribution or can create branching and cross-linking during the melt processing of the photo-oxidized PE. The processability in film blowing and the mechanical properties of these secondary materials are reported in this work. The rheological behavior, the filmability and most of the mechanical properties of the secondary PE with the rebuilt molecular structure are better than those of the post-consumer material and similar to those of the virgin polymer. TS in the machine and in the transverse direction for all the samples extruded at 50 rpm. [source] Molecular architecture of DesV from Streptomyces venezuelae: A PLP-dependent transaminase involved in the biosynthesis of the unusual sugar desosaminePROTEIN SCIENCE, Issue 5 2007E. Sethe Burgie Abstract Desosamine is a 3-(dimethylamino)-3,4,6-trideoxyhexose found in certain macrolide antibiotics such as the commonly prescribed erythromycin. Six enzymes are required for its biosynthesis in Streptomyces venezuelae. The focus of this article is DesV, which catalyzes the PLP-dependent replacement of a 3-keto group with an amino functionality in the fifth step of the pathway. For this study the three-dimensional structures of both the internal aldimine and the ketimine intermediate with glutamate were determined to 2.05 Å resolution. DesV is a homodimer with each subunit containing 12 ,-helical regions and 12 ,-strands that together form three layers of sheet. The structure of the internal aldimine demonstrates that the PLP-cofactor is held in place by residues contributed from both subunits (Asp 164 and Gln 167 from Subunit I and Tyr 221 and Asn 235 from Subunit II). When the ketimine intermediate is present in the active site, the loop defined by Gln 225 to Ser 228 from Subunit II closes down upon the active site. The structure of DesV is similar to another sugar-modifying enzyme referred to as PseC. This enzyme is involved in the biosynthesis of pseudaminic acid, which is a sialic acid-like nonulosonate found in the flagellin of Helicobacter pylori. In the case of PseC, however, the amino group is transferred to the C-4 rather than the C-3 position. Details concerning the structural analysis of DesV and a comparison of its molecular architecture to that of PseC are presented. [source] The ankyrin repeat as molecular architecture for protein recognitionPROTEIN SCIENCE, Issue 6 2004Leila K. Mosavi Abstract The ankyrin repeat is one of the most frequently observed amino acid motifs in protein databases. This protein,protein interaction module is involved in a diverse set of cellular functions, and consequently, defects in ankyrin repeat proteins have been found in a number of human diseases. Recent biophysical, crystallographic, and NMR studies have been used to measure the stability and define the various topological features of this motif in an effort to understand the structural basis of ankyrin repeat-mediated protein,protein interactions. Characterization of the folding and assembly pathways suggests that ankyrin repeat domains generally undergo a two-state folding transition despite their modular structure. Also, the large number of available sequences has allowed the ankyrin repeat to be used as a template for consensus-based protein design. Such projects have been successful in revealing positions responsible for structure and function in the ankyrin repeat as well as creating a potential universal scaffold for molecular recognition. [source] Dissecting the molecular architecture and origin of Bayash Romani patrilineages: Genetic influences from South-Asia and the BalkansAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2009Irena Martinovi, Klari Abstract The Bayash are a branch of Romanian speaking Roma living dispersedly in Central, Eastern, and Southeastern Europe. To better understand the molecular architecture and origin of the Croatian Bayash paternal gene pool, 151 Bayash Y chromosomes were analyzed for 16 SNPs and 17 STRs and compared with European Romani and non-Romani majority populations from Europe, Turkey, and South Asia. Two main layers of Bayash paternal gene pool were identified: ancestral (Indian) and recent (European). The reduced diversity and expansion signals of H1a patrilineages imply descent from closely related paternal ancestors who could have settled in the Indian subcontinent, possibly as early as between the eighth and tenth centuries AD. The recent layer of the Bayash paternal pool is dominated by a specific subset of E1b1b1a lineages that are not found in the Balkan majority populations. At least two private mutational events occurred in the Bayash during their migrations from the southern Balkans toward Romania. Additional admixture, evident in the low frequencies of typical European haplogroups, J2, R1a, I1, R1b1b2, G, and I2a, took place primarily during the early Bayash settlement in the Balkans and the Romani bondage in Romania. Our results indicate two phenomena in the Bayash and analyzed Roma: a significant preservation of ancestral H1a haplotypes as a result of considerable, but variable level of endogamy and isolation and differential distribution of less frequent, but typical European lineages due to different patterns of the early demographic history in Europe marked by differential admixture and genetic drift. Am J Phys Anthropol, 2009. © 2008 Wiley-Liss, Inc. [source] High-resolution structure of a plasmid-encoded dihydrofolate reductase: pentagonal network of water molecules in the D2 -symmetric active siteACTA CRYSTALLOGRAPHICA SECTION D, Issue 7 2006Narendra Narayana R67 plasmid-encoded dihydrofolate reductase (R67 DHFR) is an NADPH-dependent homotetrameric enzyme that catalyzes the reduction of dihydrofolate to tetrahydrofolate. The amino-acid sequence and molecular architecture of R67 DHFR and its inhibitory properties toward folate analogues are different from those of chromosomal DHFR. Here, the crystal structure of R67 DHFR refined using 1.1,Å resolution data is presented. Blocked full-matrix least-squares refinement without restraints resulted in a final R factor of 11.4%. The anisotropic atomic displacement parameters analyzed by Rosenfield matrices and translation,libration,screw validation suggested four quasi-rigid domains. A total of ten C,,HO hydrogen bonds were identified between the ,-strands. There is reasonable structural evidence that His62 is not protonated in the tetramer, which is in accord with previous pH-profile studies. The side chain of Gln67 that protrudes into the active site exhibits dual conformation, a feature noticed for the first time owing to the availability of atomic resolution data. The R67 DHFR active site is unique: it has D2 symmetry and is a large active site with a pentagonal network of water molecules and exposure of backbone atoms to solvent; the central pore is favorable for planar ring-stacking interactions. The geometrical shape, overall symmetry, local asymmetry and waters appear to dominate the binding of ligands, catalysis and inhibition. [source] Fluorinated Quinine Alkaloids: Synthesis, X-ray Structure Analysis and Antimalarial Parasite ChemotherapyCHEMISTRY - A EUROPEAN JOURNAL, Issue 31 2009Christoph Bucher Abstract Herein we report the synthesis of a series of C9-fluorinated quinine alkaloids by direct nucleophilic deoxyfluorination. This transformation gives rise to products bearing both S - and R -configured monofluoromethylene functionalities, consistent with an SN1-like mechanism. Furthermore, a series of ring-expanded 1-azabicyclo[3.2.2]nonane systems were generated by a skeletal rearrangement of the quinuclidine core. The modified alkaloids were converted to the corresponding hydrochloride salts and characterised by single-crystal X-ray diffraction analysis. The preference of the benzylic fluorine atom to adopt a gauche conformation relative to the protonated quinuclidine nitrogen atom was consistently observed throughout the cage-conserved compounds. Conversely, the molecular architecture of the 1-azabicyclo[3.2.2]nonane systems enforced an anti relationship between the fluorine atom and the protonated tertiary amine. This constitutes the first X-ray evidence of a vicinal fluorine atom at a stereogenic centre positioned anti to a substituted ammonium cation. The pharmacological efficacy of these compounds was assessed in vitro against the NF54 strain of Plasmodium falciparum (sensitive to all known antimalarial drugs). IC50 values of as low as 267,nM were observed; this highlights the potential of these materials in developing novel agents for parasite chemotherapy. [source] |