Molar Excess (molar + excess)

Distribution by Scientific Domains


Selected Abstracts


Inhibition of urokinase receptor gene expression and cell invasion by anti-uPAR DNAzymes in osteosarcoma cells

FEBS JOURNAL, Issue 14 2005
Charles E. De Bock
The urokinase-type plasminogen activator (uPA) receptor (uPAR) has been implicated in signal transduction and biological processes including cancer metastasis, angiogenesis, cell migration, and wound healing. It is a specific cell surface receptor for its ligand uPA, which catalyzes the formation of plasmin from plasminogen, thereby activating the proteolytic cascade that contributes to the breakdown of extracellular matrix, a key step in cancer metastasis. We have synthesized three different DNA enzymes (Dz372, Dz483 and Dz720) targeting uPAR mRNA at three separate purine (A or G),pyrimidine (U or C) junctions. Two of these DNAzymes, Dz483 and Dz720, cleaved uPAR transcript in vitro with high efficacy and specificity at a molar ratio (uPAR to Dz) as low as 1 : 0.2. When analyzed over 2 h with a 200-fold molar excess of DNAzymes to uPAR transcript, Dz720 and Dz483 were able to decrease uPAR transcript in vitro by ,,93% and ,,84%, respectively. They also showed an ability to cleave uPAR mRNA in the human osteosarcoma cell line Saos-2 after transfection. The DNAzyme Dz720 decreased uPAR mRNA within 4 h of transfection, and inhibited uPAR protein concentrations by 55% in Saos-2 cells. The decrease in uPAR mRNA and protein concentrations caused by Dz720 significantly suppressed Saos-2 cell invasion as assessed by an in vitro Matrigel assay. The use of DNAzyme methodology adds a new potential clinical agent for decreasing uPAR mRNA expression and inhibiting cancer invasion and metastasis. [source]


Oestrogenic activity of benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) in MCF7 human breast cancer cells in vitro

JOURNAL OF APPLIED TOXICOLOGY, Issue 5 2009
A. K. Charles
Abstract Benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) are added to bodycare cosmetics used around the human breast. We report here that all three compounds possess oestrogenic activity in assays using the oestrogen-responsive MCF7 human breast cancer cell line. At 3 000 000-fold molar excess, they were able to partially displace [3H]oestradiol from recombinant human oestrogen receptors ER, and ER,, and from cytosolic ER of MCF7 cells. At concentrations in the range of 5 × 10,5 to 5 × 10,4 m, they were able to increase the expression of a stably integrated oestrogen-responsive reporter gene (ERE-CAT) and of the endogenous oestrogen-responsive pS2 gene in MCF7 cells, albeit to a lesser extent than with 10,8 m 17, -oestradiol. They increased the proliferation of oestrogen-dependent MCF7 cells over 7 days, which could be inhibited by the antioestrogen fulvestrant, suggesting an ER-mediated mechanism. Although the extent of stimulation of proliferation over 7 days was lower with these compounds than with 10,8 m 17, -oestradiol, given a longer time period of 35 days the extent of proliferation with 10,4 m benzyl salicylate, benzyl benzoate or butylphenylmethylpropional increased to the same magnitude as observed with 10,8 m 17, -oestradiol over 14 days. This demonstrates that benzyl salicylate, benzyl benzoate and butylphenylmethylpropional are further chemical components of cosmetic products which give oestrogenic responses in a human breast cancer cell line in culture. Further research is now needed to investigate whether oestrogenic responses are detectable using in vivo models and the extent to which these compounds might be absorbed through human skin and might enter human breast tissues. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Oestrogenic activity of isobutylparaben in vitro and in vivo

JOURNAL OF APPLIED TOXICOLOGY, Issue 4 2002
P. D. Darbre
Abstract The alkyl esters of p -hydroxybenzoic acid (parabens) are used widely as preservatives in foods, pharmaceuticals and cosmetics to which the human population is exposed. Recent studies have reported that methylparaben, ethylparaben, n -propylparaben and n -butylparaben all possess oestrogenic activity in several in vitro assays and in animal models in vivo. This study reports on the oestrogenic activity of isobutylparaben in a panel of assays in vitro and in vivo. Isobutylparaben was able to displace [3H]oestradiol from cytosolic oestrogen receptor , of MCF7 human breast cancer cells by 81% at 100 000-fold molar excess. Using a clonal line of MCF7 cells containing a stably transfected oestrogen-responsive ERE-CAT reporter gene, CAT gene expression could be increased by isobutylparaben such that the magnitude of the response was the same at 10,5 M isobutylparaben as with 10,8 M 17,-oestradiol. Isobutylparaben could also increase expression of the endogenous oestrogen-responsive pS2 gene in MCF7 cells and maximal expression at 10,5 M isobutylparaben could be inhibited with the anti-oestrogen ICI 182 780. The proliferation of two oestrogen-dependent human breast cancer cell lines MCF7 and ZR-75-1 could be increased with isobutylparaben such that at concentrations of 10,5 M the proliferation response was of the same magnitude as with 10,8 M 17,-oestradiol. Evidence for oestrogen receptor mediation of proliferation effects was provided by the inability of isobutylparaben to influence the growth of oestrogen-unresponsive MDA-MB-231 human breast cancer cells and by the ability of the anti-oestrogen ICI 182 780 to inhibit the isobutylparaben effects on MCF7 cell growth. The proliferation response to 10,10 M 17,-oestradiol was not antagonized with isobutylparaben at any concentration from 10,9 M to 10,4 M in either MCF7 or ZR-75-1 cells. Finally, subcutaneous administration of isobutylparaben was able to increase the uterine weight in the immature mouse after three daily doses of 1.2 or 12.0 mg per mouse. Previous work using linear-alkyl-chain parabens has shown that oestrogenic activity increases with alkyl chain length from methylparaben to n -butylparaben. The results here show that branching of the alkyl chain to isobutylparaben increases oestrogenic activity beyond that of the equivalent length linear alkyl chain in n -butylparaben. Copyright © 2002 John Wiley & Sons, Ltd. [source]


DNA aptamers developed against a soman derivative cross-react with the methylphosphonic acid core but not with flanking hydrophobic groups

JOURNAL OF MOLECULAR RECOGNITION, Issue 3 2009
John G. Bruno
Abstract Twelve rounds of systematic evolution of ligands by exponential enrichment (SELEX) were conducted against a magnetic bead conjugate of the para -aminophenylpinacolylmethylphosphonate (PAPMP) derivative of the organophosphorus (OP) nerve agent soman (GD). The goal was to develop DNA aptamers that could scavenge GD in vivo, thereby reducing or eliminating the toxic effects of this dangerous compound. Aptamers were sequenced and screened in peroxidase-based colorimetric plate assays after rounds 8 and 12 of SELEX. The aptamer candidate sequences exhibiting the highest affinity for the GD derivative from round 8 also reappeared in several clones from round 12. Each of the highest affinity PAPMP-binding aptamers also bound methylphosphonic acid (MPA). In addition, the aptamer with the highest overall affinity for PAPMP carried a sequence motif (TTTAGT) thought to bind MPA based on previously published data (J. Fluoresc 18: 867,876, 2008). This sequence motif was found in several other relatively high affinity PAPMP aptamer candidates as well. In studies with the nerve agent GD, pre-incubation of a large molar excess of aptamer candidates failed to protect human butyrylcholinesterase (BuChE) from inhibition. With the aid of three-dimensional molecular modeling of the GD derivative it appears that a hydrophilic cleft sandwiched between the pinacolyl group and the p -aminophenyl ring might channel nucleotide interactions to the phosphonate portion of the immobilized GD derivative. However, bona fide GD free in solution may be repulsed by the negative phosphate backbone of aptamers and rotate its phosphonate and fluorine moieties away from the aptamer to avoid being bound. Future attempts to develop aptamers to GD might benefit from immobilizing the pinacolyl group of bona fide GD to enhance exposure of the phosphonate and fluorine to the random DNA library. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Microwave-assisted solid-phase peptide synthesis at 60 °C: alternative conditions with low enantiomerization,

JOURNAL OF PEPTIDE SCIENCE, Issue 12 2009
Carina Loffredo
Abstract Several conditions have been used in the coupling reaction of stepwise SPPS at elevated temperature (SPPS-ET), but we have elected the following as our first choice: 2.5-fold molar excess of 0.04,0.08 M Boc or Fmoc-amino acid derivative, equimolar amount of DIC/HOBt (1:1) or TBTU/DIPEA (1:3), 25% DMSO/toluene, 60 °C, conventional heating. In this study, aimed to further examine enantiomerization under such condition and study the applicability of our protocols to microwave-SPPS, peptides containing L -Ser, L -His, L -Cys and/or L -Met were manually synthesized traditionally, at 60 °C using conventional heating and at 60 °C using microwave heating. Detailed assessment of all crude peptides (in their intact and/or fully hydrolyzed forms) revealed that, except for the microwave-assisted coupling of L -Cys, all other reactions occurred with low levels of amino acid enantiomerization (<2%). Therefore, herein we (i) provide new evidences that our protocols for SPPS at 60 °C using conventional heating are suitable for routine use, (ii) demonstrate their appropriateness for microwave-assisted SPPS by Boc and Fmoc chemistries, (iii) disclose advantages and limitations of the three synthetic approaches employed. Thus, this study complements our past research on SPPS-ET and suggests alternative conditions for microwave-assisted SPPS. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd. [source]


Identification of a 251-bp Fragment of the PAI-1 Gene Promoter That Mediates the Ethanol-Induced Suppression of PAI-1 Expression

ALCOHOLISM, Issue 5 2001
Hernan E. Grenett
Background: Moderate alcohol consumption reduces the risk for coronary heart disease. This cardioprotection may be due to ethanol enhancement of fibrinolysis. Fibrinolysis involves the interaction of plasminogen activators (PAs) and the plasminogen activator inhibitor type-1 (PAI-1). Factor(s) that decrease endothelial cell (EC) PAI-1 expression increase fibrinolysis and may decrease the risk for cardiovascular disease. Methods: Five promoter deletion fragments were generated from a 1.1-kb PAI-1 promoter fragment and ligated to a luciferase reporter gene. Cultured human umbilical vein endothelial cells (HUVECs) were transiently transfected with these PAI-1 deletion constructs. A 251-base pair (bp) fragment of the PAI-1 promoter, positions ,800 to ,549, was cloned upstream of a heterologous promoter/enhancer. ECs luciferase activity was measured in the absence/presence of 20 mM ethanol. Electrophoresis mobility shift assays were performed with nuclear extracts from untreated and ethanol-treated ECs using this 251-bp fragment. Results: Deletion analysis showed a region between position ,800 and ,549 mediated ethanol repression of luciferase activity. This 251-bp promoter fragment also repressed the activity of a heterologous promoter/enhancer in the presence of ethanol. Using the labeled 251-bp fragment, nuclear extracts from ethanol-treated ECs contained two inducible bands and one enhanced band. Non-ethanol treated nuclear extracts also contained a band that was not observed in ethanol-treated samples. Competition using 100-fold molar excess of unlabeled probe abolished these four bands. Conclusions: Repression of PAI-I gene transcription in cultured HUVECs exposed to ethanol may involve the interaction of several transcription factors with binding sites localized between positions ,800 and ,549 of the PAI-1 gene promoter. [source]


Discovery of novel mechanisms and molecular targets for the inhibition of activated thrombin activatable fibrinolysis inhibitor

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 11 2008
K. HILLMAYER
Summary.,Background:,Thrombin activatable fibrinolysis inhibitor (TAFI) is an important regulator of fibrinolysis and an attractive target to develop profibrinolytic drugs. Objective:,To analyze the (inhibitory) properties of five monoclonal antibodies (mAbs) directed towards rat TAFI (i.e. MA-RT13B2, MA-RT30D8, MA-RT36A3F5, MA-RT36B2 and MA-RT82F12). Methods and results:,Direct interference of the mAb with rat activated TAFI (TAFIa) activity was assayed using a chromogenic activity assay. This revealed reductions of 79% ± 1%, 54% ± 4%, and 19% ± 2% in activity in the presence of a 16-fold molar excess of MA-RT13B2, MA-RT36A3F5, and MA-RT82F12, respectively whereas MA-RT30D8 and MA-RT36B2 had no direct inhibitory effect. Additionally, MA-RT13B2 and MA-RT36A3F5 reduced rat TAFIa half-life by 56% ± 2% and 61% ± 3%. Tissue-type plasminogen activator mediated in vitro clot lysis was determined using rat plasma. Compared to potato tuber carboxypeptidase inhibitor, MA-RT13B2, MA-RT30D8, MA-RT36A3F5, and MA-RT82F12 reduced clot lysis times by 86% ± 14%, 100% ± 5%, 100% ± 10%, and 100% ± 11%, respectively. During epitope mapping, Arg227 and Ser251 were identified as major residues interacting with MA-RT13B2. Arg188 and His192 contribute to the interaction with MA-RT36A3F5. Arg227, Ser249, Ser251, and Tyr260 are involved in the binding of MA-RT30D8 and MA-RT82F12 with rat TAFI(a). The following mechanisms of inhibition have been deduced: MA-RT13B2 and MA-RT36A3F5 have a destabilizing effect on rat TAFIa whereas MA-RT30D8 and MA-RT82F12 partially block the access to the active site of TAFIa or interact with the binding of TAFIa to the blood clot. Conclusions:,The described inhibitory mAb towards rat TAFIa will facilitate TAFI research in murine models. Additionally, we reveal novel molecular targets for the direct inhibition of TAFIa through different mechanisms. [source]


Cloning and paratope analysis of an antibody fragment, a rational approach for the design of a PAI-1 inhibitor

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2 2004
K. Verbeke
Summary., This study reports the cloning, characterization and paratope analysis of the plasminogen activator inhibitor-1 (PAI-1) neutralizing single-chain variable fragment 56A7C10 (scFv-56A7C10). ScFv-56A7C10-wt exhibits a similar affinity (KA = 1.01 ± 0.3 × 109 m,1) and PAI-1 inhibitory capacity (90 ± 6% PAI-1 inhibition at a 16-fold molar excess and IC50 = 44 ± 14 ng mL,1) as MA-56A7C10 (KA = 1.43 ± 0.4 × 109 m,1, 90 ± 2% PAI-1 inhibition at a 16-fold molar excess and IC50 = 122 ± 26 ng mL,1). Subsequently, alanine scanning of the six complementarity determining regions (CDRs) was performed and the scFv-56A7C10-mutants (n = 26) were analyzed for their PAI-1 binding and PAI-1 inhibitory properties. Mutation of the residues Y32 and V33 in the CDR1 of the heavy chain (HCDR1) and the residues R98, H99, W100 or F100a (HCDR3) resulted in reduced PAI-1 inhibitory capacities (IC50 , 418 ng mL,1), confirmed by reduced affinities (14-, 17-, 7-, 9- and 16-fold reduced, respectively, vs. scFv-56A7C10-wt). In the light chain, mutation of the residues W50 (LCDR2), H91, Y92, D93, or W96 (LCDR3) resulted in reduced PAI-1 inhibitory properties (IC50 , 160 ng mL,1) and decreased affinities (i.e. 4-, 9-, 3-, 3- and 2-fold reduced affinity, respectively, vs. scFv-56A7C10-wt). Furthermore, an overlapping peptide scan confirmed the importance of the HCDR3 region. These data, combined with a three-dimensional model of scFv-56A7C10, reveal the molecular and structural properties of the paratope and contribute to the rational design of PAI-1 neutralizing compounds. [source]