Mol Dm (mol + dm)

Distribution by Scientific Domains


Selected Abstracts


Electrode Modified with Cobalt Cyclohexylbutyrate for the Determination of Low Molecular Weight Thiol Group Bearing Compounds Using Catalytic Stripping Voltammetry

ELECTROANALYSIS, Issue 3 2010
Petr Jakubec
Abstract Glassy carbon electrode, modified with cobalt(II) cyclohexylbutyrate monohydrate immobilized in polystyrene matrix is usable for determination of thiol group bearing compounds both in oxidized and reduced forms using catalytic stripping voltammetry. The measurements are carried out in acetate buffer (pH,4.3) containing Tween 40. After the accumulation step at ,850,mV vs. Ag/AgCl a peak at ,170,mV is observed on linear sweep voltammogram, the height of which is proportional to the concentration of added thiol. Addition of carbon nanotubes into polystyrene film enhances the sensitivity of the modified electrode. The detection limit is 1×10,6,mol dm,3 for all studied thiols. The electrode can be regenerated by exposing it to the potential between 300,600,mV. [source]


Influence of Aprotic Solvent on Selectivity of an Amperometric Sensor with Nafion Membrane

ELECTROANALYSIS, Issue 5 2006
B. Chachulski
Abstract This paper presents the results of investigation on selectivity of the sulfur dioxide amperometric sensor with Nafion membrane in the presence of carbon monoxide and nitrogen dioxide as the interferents. There have been compared selectivity coefficients, for the sensors containing the following internal electrolytes: solution of sulfuric acid (concentration 5,mol dm,3) in pure water (A) and solution of sulfuric acid (concentration 5,mol dm,3) in mixed solvent dimethylsulfoxide-water with an DMSO: H2O mole ratio of 1,:,2 (B). Values of the selectivity coefficients have been calculated based on the calibration curves. Analysis of both calibration curves and selectivity coefficients plays a significant role in optimization of a working point of a particular sensor. The investigated sensor operates in a three-electrode system, where the working and counter electrodes are vacuum sublimation deposited on the membrane surface. [source]


Hydrolysis of diphenylmethyltin(iv) chloride in different aqueous solutions of ethanol

HETEROATOM CHEMISTRY, Issue 7 2008
Sima Mehdizadeh
The hydrolysis of [(Ph)2MeSn(IV)]+ has been studied spectrophotometrically at 25,C and constant ionic strength of 0.1 mol dm,3 sodium perchlorate. Over a wide pH range, 1,11, the investigation has been performed in different aqueous solutions of ethanol. The species formed together with their formation constants have been determined using the computer program Squad. The hydrolysis constants at different media were analyzed in terms of Kamlet and Taft's parameters. A single-parameter correlation of the formation constants, K1-1 and K1-2, versus , (hydrogen-bond donor acidity), , (hydrogen-bond acceptor basicity), and ,* (dipolarity/polarizability) for both cases are relatively poor in all solutions, but multiparameter correlation represents significant improvement with regard to the single-parameter models. In this work, we have also used the normalized polarity parameter, E, alone and in combination with the Kamlet,Taft's parameters to find a better correlation of the formation constants in different aqueous solutions of ethanol. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:654,660, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20484 [source]


Oxidation of diclofenac sodium by diperiodatoargantate(III) in aqueous alkaline medium and its determination in urine and blood by kinetic methods

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 6 2010
P. N. Naik
The kinetics and oxidation of diclofenac sodium (DFS) by diperiodatoargentate(III) (DPA) in alkaline medium at 298 K and at a constant ionic strength of 0.60 mol dm,3 were studied spectrophotometrically. The oxidation products were [2-(2,6-dicloro-phynylamino)-phenyl]-methenol and Ag(I), identified by LC-ESI-MS and IR spectral studies. The reaction between DFS and DPA in alkaline medium exhibits 1:1 stoichiometry. The reaction is first order in [DPA] and has a less than unit order dependence each in [DFS] and [alkali]. Increasing concentrations of IO,4 retard the reaction. The active species of DPA proposed to be monoperiodatoargentate(III), and a mechanism is suggested. The rate constants involved in the different steps of the mechanism were determined and are discussed. The activation parameters with respect to a rate-limiting step of the mechanism were determined. The thermodynamic quantities were also determined. Using the oxidation of DFS by DPA, DFS was analyzed by kinetic methods in urine and blood sample. The proposed method enables DFS analysis in the range from 5.0 × 10,5 to 5.0 × 10,3 mol dm,3. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 336,346, 2010 [source]


Promotion of the fenton reaction by Cu2+ ions: Evidence for intermediates

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 12 2006
Mordechai L. Kremer
The promotion of the Fenton reaction by Cu2+ ions has been investigated using a wide range of [Cu2+]. Both the disappearance of Fe2+ and the evolution of O2 were followed as a function of time by quenching the reaction mixture with o -phenanthroline or with excess Fe2 + ions, respectively. Two series of experiments were performed. In one series [H2O2] was 5 × 10,4 mol dm,3, and in the other [H2O2] was reduced to 5 × 10,5 mol dm ,3. By stopping the reaction with excess Fe2+ ions, significant differences in the measured absorbance in the two series were observed. In the higher [H2O2] range, the absorbance decreased monotonically in time, due to O2 formation during the reaction. In the lower range, an initial transient rise of the absorbance was observed, indicating the formation of spectroscopically distinct intermediates in the system. A mechanism involving the intermediates FeOCu4+ and FeOCu5+ has been set up. Rate constants of the mechanism have been determined. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 725,736, 2006 [source]


Kinetics of base hydrolysis of ,-amino acid esters catalyzed by the copper(II) complex of N,N,N,,N,-tetramethylethylenediamine (Me4en)

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 12 2006
Mahmoud M. A. Mohamed
The kinetics of base hydrolysis of glycine-, histidine-, and methionine methyl esters in the presence of [Cu-Me4en]2+ complex is studied in aqueous solutions and in dioxane,water solutions of different compositions at T = 25°C and I = 0.1 mol dm,1. The kinetics of base hydrolysis of glycine and methionine methyl esters is studied at different temperatures. The kinetic data fits assuming that the hydrolysis proceeds in one step. The activation parameters for the base hydrolysis of the complexes are evaluated. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 737,745, 2006 [source]


Kinetics and mechanism of oxidation of a ternary complex involving dipicolinatochromium(III) and DL -aspartic acid by N -bromosuccinimide

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 7 2004
Hassan A. Ewais
The kinetics of oxidation of [CrIII(Dpc)(Asp)(H2O)2] (Dpc = dipicolinic acid and Asp = DL -aspartic acid) by N -bromosuccinimide (NBS) in aqueous solution have been found to obey the equation: where k2 is the rate constant for the electron transfer process, K1 is the equilibrium constant for deprotonation of [CrIII(Dpc)(Asp)(H2O)2], K2 and K3 are the pre-equilibrium formation constants of precursor complexes [CrIII(Dpc)(Asp)(H2O)(NBS)] and [CrIII(Dpc)(Asp)(H2O)(OH)(NBS)],. Values of k2 = 4.85 × 10,2 s,1, K1 = 1.85 × 10,7 mol dm,3, and K2 = 78.2 mol,1 dm3 have been obtained at 30°C and I = 0.1 mol dm,3. The experimental rate law is consistent with a mechanism in which the deprotonated [CrIII(Dpc)(Asp)(H2O)(OH)], is considered to be the most reactive species compared to its conjugate acid. It is assumed that electron transfer takes place via an inner-sphere mechanism. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 394,400, 2004 [source]


Spectral, kinetic, and redox properties of basic fuchsin in homogeneous aqueous and sodium dodecyl sulfate micellar media

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 12 2003
N. Ramanathan
Effect of anionic surfactant on the optical absorption spectra and redox reaction of basic fuchsin, a cationic dye, has been studied. Increase in the absorbance of the dye band at 546 nm with sodium dodecyl sulfate (SDS) is assigned to the incorporation of the dye in the surfactant micelles with critical micellar concentration (CMC) of 7.3 × 10,3 mol dm,3. At low surfactant concentration (<5 × 10,3 mol dm,3) decrease in the absorbance of the dye band at 546 nm is attributed to the formation of a dye,surfactant complex (1:1). The environment, in terms of dielectric constant, experienced by basic fuchsin inside the surfactant micelles has been estimated. The association constant (KA) for the formation of dye,SDS complex and the binding constant (KB) for the micellization of dye are determined. Stopped-flow studies, in the premicellar region, indicated simultaneous depletion of dye absorption and formation of new band at 490 nm with a distinct isosbestic point at 520 nm and the rate constant for this region increased with increasing SDS concentration. The reaction of hydrated electron with the dye and the decay of the semireduced dye are observed to be slowed down in the presence of SDS. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 629,636, 2003 [source]


Kinetics and mechanism of decomposition of intermediate complex during oxidation of pectate polysaccharide by potassium permanganate in alkaline solutions

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 2 2003
Khalid S. Khairou
The kinetics of decomposition of an [Pect·MnVIO42,] intermediate complex have been investigated spectrophotometrically at various temperatures of 15,30°C and a constant ionic strength of 0.1 mol dm,3. The decomposition reaction was found to be first-order in the intermediate concentration. The results showed that the rate of reaction was base-catalyzed. The kinetic parameters have been evaluated and found to be ,S, = , 190.06 ± 9.84 J mol,1 K,1, ,H, = 19.75 ± 0.57 kJ mol,1, and ,G, = 76.39 ± 3.50 kJ mol,1, respectively. A reaction mechanism consistent with the results is discussed. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 67,72, 2003 [source]


Kinetics and mechanism of oxidation of aurate(I) by peroxydisulphate in aqueous hydrochloric acid

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 10 2002
R. M. Babshet
The reaction between Au(I), generated by reaction of thallium(I) with Au(III), and peroxydisulphate was studied in 5 mol dm,3 hydrochloric acid. The reaction proceeds with the formation of an ion-pair between peroxydisulphate and chloride ion as the Michealis,Menten plot was linear with intercept. The ion-pair thus formed oxidizes AuCl2, in a slow two-electron transfer step without any formation of free radicals. The ion-pair formation constant and the rate constant for the slow step were determined as 113 ± 20 dm,3 mol,1 and 5.0 ± 1.0 × 10,2 dm3 mol,1 s,1, respectively. The reaction was retarded by hydrogen ion, and formation of unreactive protonated form of the reductant, HAuCl2, causes the rate inhibition. From the hydrogen ion dependence of the reaction rate, the protonation constant was calculated to be as 0.6 ± 0.1 dm3 mol,1. The activation parameters were determined and the values support the proposed mechanism. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 589,594, 2002 [source]


Cobalt removal from waste-water by means of supported liquid membranes

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 5 2009
Kim Verbeken
Abstract BACKGROUND: Supported liquid membranes (SLM) are an alternative technique to remove and recover metals from diluted process solutions and waste-water. In the present work, the removal of Co(II) from a synthetic CoSO4 solution containing initial amounts of cobalt(II) in the range 100,200 ppm (0.1,0.2 g dm,3) has been studied on a pilot scale. By performing batch equilibrium experiments, the optimal settings, i.e. the composition of the organic phase, the pH of the feed, the type and concentration of the stripping agent were determined. RESULTS: It is shown that the equilibrium characteristics of a synergistic extractant mixture containing di-2-ethyl-hexylphosphoric acid (D2EHPA) and 5-dodecylsalicylaldoxime (LIX 860-I) are superior to D2EHPA. Both hydrochloric acid and sulfuric acid have been evaluated as stripping solutions in liquid,liquid extraction tests and as the receiving phase in a SLM configuration. Although equilibrium tests showed no difference in stripping characteristics between both chemicals, it was observed that in a SLM configuration the stability of the system when hydrochloric acid is used is poor. With a commercially available SLM module (Liqui-Cel Extra-Flow 4 × 28) having a surface area of 19 m2, a steady Co(II) flux of 0.140 gm,2h,1 has been obtained at influent concentrations of cobalt between 100 and 200 ppm with 3 mol dm,3 sulfuric acid as stripping phase. CONCLUSIONS: The results obtained show that a supported liquid membrane containing a synergistic mixture of LIX 860-I and D2EHPA gives the possibility of recovering cobalt from dilute solutions. Copyright © 2008 Society of Chemical Industry [source]


Extraction equilibria and separation of phenylalanine and aspartic acid from water with di(2-ethylhexyl)phosphoric acid

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2006
Su-Hsia Lin
Abstract The distribution equilibria of single and binary L -phenylalanine and L -aspartic acid between water and a kerosene solution of di(2-ethylhexyl)phosphoric acid (D2EHPA) were studied. It was shown that the distribution ratios of phenylalanine generally increased with increasing aqueous pH (2,5) in the D2EHPA concentration range 0.1,0.5 mol dm,3, but those of aspartic acid decreased with increasing solution pH. Different reaction stoichiometries were proposed for the extraction of phenylalanine and aspartic acid under the conditions studied. The extraction equilibrium constants were obtained. Competitive extraction in binary systems was more apparent in the pH range where the cationic form of amino acids was not predominant. The present results indicated that selective separation of phenylalanine to aspartic acid was possible with this cationic extractant when they were extracted at higher pH and stripped using higher acidity of HCl solution. Copyright © 2006 Society of Chemical Industry [source]


Liquid,liquid extraction of cadmium(II) by Cyanex 923 and its application to a solid-supported liquid membrane system

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 9 2005
Ana María Rodríguez
Abstract The extraction of cadmium(II) by Cyanex 923 (a mixture of alkylphosphine oxides) in Solvesso 100 from hydrochloric acid solution has been investigated. The extraction reaction is exothermic. The numerical analysis of metal distribution data suggests the formation of CdCl2.2L, HCdCl3.2L and H2CdCl4.2L (L = ligand) in the organic phase. The results obtained for cadmium(II) distribution have been implemented in a solid-supported liquid membrane system. The influences of feed phase stirring speed (400,1400 min,1), membrane composition (carrier concentration: 0.06,1 mol dm,3) and metal concentration (0.01,0.08 g dm,3) on cadmium transport have been investigated. Copyright © 2005 Society of Chemical Industry [source]


Recycling of nickel,metal hydride batteries.

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 9 2004
I: Dissolution, solvent extraction of metals
Abstract Nickel,metal hydride batteries contain valuable metallic components and although they are not considered a hazardous waste, recovery of these materials is necessary from an economic point of view. In this work a hydrometallurgical method for the dissolution and separation of the metals from cylindrical nickel,metal hydride rechargeable batteries was investigated. Hydrochloric acid was employed as the leaching agent to dissolve the metals from the batteries. Dissolution of metals was investigated as a function of acid concentration, leaching time and temperature. Suitable conditions for maximum metal dissolution were 3 h leaching with 4.0 mol dm,3 hydrochloric acid solutions at 95 °C. Extraction of 98% of nickel, 100% of cobalt and 99% of rare earth elements was achieved under these conditions. Separation of the rare earths from nickel and cobalt was preliminarily investigated by single batch solvent extraction with 25% bis(2-ethylhexyl)phosphoric acid. Efficient separation via complete extraction of the rare earths was obtained at a pH of approximately 2.5 while leaving nickel and cobalt in the raffinate. A shrinking particle model which can enable, under certain conditions, evaluation of the extent of metal dissolution present in nickel,metal hydride batteries was developed. A proposed electrochemical recovery of nickel and cobalt is also briefly discussed. Copyright © 2004 Society of Chemical Industry [source]


Recycling of nickel,metal hydride batteries.

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 9 2004
II: Electrochemical deposition of cobalt, nickel
Abstract A combination of hydrometallurgical and electrochemical processes has been developed for the separation and recovery of nickel and cobalt from cylindrical nickel,metal hydride rechargeable batteries. Leaching tests revealed that a 4 mol dm,3 hydrochloric acid solution at 95 °C was suitable to dissolve all metals from the battery after 3 h dissolution. The rare earths were separated from the leaching solution by solvent extraction with 25% bis(2-ethylhexyl)phosphoric acid (D2EHPA) in kerosene. The nickel and cobalt present in the aqueous phase were subjected to electrowinning. Galvanostatic tests on simulated aqueous solutions investigated the effect of current density, pH, and temperature with regard to current efficiency and deposit composition and morphology. The results indicated that achieving an NiCo composition with desirable properties was possible by varying the applied current density. Preferential cobalt deposition was observed at low current densities. Galvanostatic tests using solutions obtained from treatment of batteries revealed that the aqueous chloride phase, obtained from the extraction, was suitable for recovery of nickel and cobalt through simultaneous electrodeposition. Scanning electron micrography and X-ray diffraction analysis gave detailed information of the morphology and the crystallographic orientation of the obtained deposits. Copyright © 2004 Society of Chemical Industry [source]


Removal of cupric ions from acidic sulfate solution using reticulated vitreous carbon rotating cylinder electrodes

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 9 2004
Gavin W Reade
Abstract The potentiostatic deposition of copper from acid sulfate solutions (0.50 mol dm,3 Na2SO4 at pH 2 and 298 K) was studied at four porosity grades (10, 30, 60 and 100 pores per linear inch, ppi) of reticulated vitreous carbon (RVC) rotating cylinder electrode (RCE). The rate of removal of cupric ions from a 200 cm3 volume of electrolyte was examined as a function of the grade of RVC foam, the electrode potential and the initial cupric ion concentration. For the 100 ppi material, the product of the mass transport coefficient and the electroactive area per unit volume of electrode (kmAe) was equal to 0.28 s,1 at a potential of ,500 mV vs SCE for an initial cupric ion concentration of 0.85 mmol dm,3 and a constant rotation speed of 1500 rev min,1. Under the experimental conditions, an initial dissolved copper concentration of 63.5 ppm could be reduced to <0.1 ppm in approximately 60 min using a 100 ppi RVC RCE. SEM studies showed some non-uniform deposition of metal due to heterogeneous nucleation of copper together with the development of rough deposits. Copyright © 2004 Society of Chemical Industry [source]


Characterization of anion-exchange membranes containing pyridinium groups

AICHE JOURNAL, Issue 12 2003
Moon-Sung Kang
A poly(vinyl chloride) (PVC)/glycidyl methacrylate (GMA)-divinyl benzene (DVB)-based membrane was prepared via monomer sorption, and then pyridium or its derivates (that is, 4-ethyl pyridium, 4-tetrabutyl pyridium) were introduced into the PVC/poly(GMA-DVB) base membrane. The effects of pyridinium anion-exchangeable sites on the water splitting and the electrochemical properties of the membrane were investigated. The electrochemical properties and the water splitting on the anion-exchange membranes were compared with selected commercial membranes containing quaternary ammonium groups. The pyridium membranes showed good electrochemical properties, comparable to those of the commercial membranes, with electrical resistances of less than 3.0 × 10,4 ,·m2 in 0.5 mol dm,3 NaCl and high ionic permselectivities (the transport number of Cl, ions being 0.96). Moreover, water splitting indicated by the proton transport numbers of the membranes containing pyridinium or its derivates, were about two or three orders of magnitude lower than those of the commercial membranes (such as AM-1) at the same current density because the resonance effect in the quaternary pyridinium groups contributed to their molecular stability. [source]


Hydrogen bonding in benzenesulfonic and 4-toluenesulfonic acids dissolved in N,N,-dimethylformamide: an FT-Raman study

JOURNAL OF RAMAN SPECTROSCOPY, Issue 2 2004
Jose M. Alía
Abstract Solutions of benzenesulfonic acid (BSA) and monohydrated 4-toluenesulfonic acid (PTSA) in dimethylformamide (DMF) were studied by FT-Raman spectroscopy in the concentration range 1.0,5.0 mol dm,3. Spectra in the region of the acid S,OH and benzenesulfonate anion SO3, stretching bands were analysed using band-fitting procedures in order to ascertain the degree of acid dissociation. In BSA solutions, this parameter changes from 0.34 (1.02 M solution) to 0.11 (5.01 M solution) despite the strong character of the acid. Interaction of DMF with undissociated BSA produces a new band in the ,(C,,N,C,) Raman spectral region near 866 cm,1, displaced ,11.0 cm,1 and assigned to DMF molecules hydrogen-bonded to BSA. In PTSA solutions, hydrogen bonds are formed with the oxonium ion (H3O+) dissociated from the acid. In this case, the displacement observed is only ,7.0 cm,1, indicating a weaker interaction. From the concentration of hydrogen-bonded DMF, the mean number of hydrogen-bonds participating in bonding with each solvent molecule can be calculated. This number changes, in BSA solutions, from ca. 0.5 in the less concentrated solutions up to ca. 1.0 in the most concentrated. This result supports the conclusion that BSA,DMF complexes of fixed stoichiometry are not present in the range of concentrations studied here. On the contrary, the oxonium ions form a stable complex of stoichiometry (DMF)2·H3O+ which does not change with the acid concentration. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Fluorescence background suppression in Raman spectroscopy using combined Kerr gated and shifted excitation Raman difference techniques

JOURNAL OF RAMAN SPECTROSCOPY, Issue 4 2002
P. Matousek
An exceptionally high level of fluorescence rejection from resonance Raman spectra was achieved using a combination of two techniques, namely Kerr gated temporal rejection with shifted excitation Raman difference spectroscopy. The method was able to recover the resonance Raman spectrum from the intense fluorescence background with a signal-to-noise ratio at least 10 times higher than that achievable with either of the two approaches used individually. To demonstrate the effectiveness of the technique we obtained the resonance Raman spectrum of the laser dye rhodamine 6G (1 × 10,3 mol dm,3) in methanol by excitation at 532 nm and measuring under the maximum of fluorescence emission at 560,590 nm. The method reached the photon shot noise limit of the residual fluorescence providing a detection limit for Raman spectra 106 times lower than the original fluorescence intensity in an accumulation time of 800 s. A unique feature of the experiment was the way in which the optical parametric amplifier light source was configured to alternate automatically between the two excitation wavelengths using an optogalvanic mirror arrangement. The ultra-high sensitivity of the combined approach holds great promise for selective probing of complex biological systems using resonance Raman spectroscopy. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Penicillin G splitting in a flow-through electro-membrane reactor with the membrane-bound enzyme

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2009
Pavel Hasal
Abstract Penicillin G (PenG) (0.05 mol dm,3 in phosphate buffer, pH = 8) was hydrolyzed in a continuous flow-through electro-membrane reactor (EMR) with the penicillin G acylase (PGA) (EC 3.5.1.11) immobilized in 10% (w/v) polyacrylamide membrane with an area of 900 mm2, thickness of 1 mm and enzyme activity of 100 U cm,3 and 160 U cm,3, respectively. The PenG was continuously fed to the substrate compartment adjacent to one membrane surface. Reaction products were washed from the membrane by a phosphate buffer solution fed to the product compartment adjacent to the other membrane surface. The mean residence time of both streams was varied from 11.3 min to 45 min. An electric field perpendicular to the membrane surface was imposed on the reactor and the electric current density was varied from 0 to 822 A m,2. Substrate conversion was determined as a function of the mean residence time, of the applied electric current density and of the enzyme activity of the membrane. The conversion increased with increasing residence time. The applied electric current increased substrate conversion by 200% at short residence times and at low enzyme activity of the membrane. Oscillatory reaction regime was evoked by step change of the mean residence time of reactant streams in the reactor. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


The effect of substituents on the aggregation and gelation of azo sulphonate dyes

COLORATION TECHNOLOGY, Issue 3 2005
Kunihiro Hamada
The aggregation and gelation of sodium 1-phenylazo-2-hydroxy-6-naphthalene sulphonate azo dyes containing fluoro, ethyl, n -propyl, iso -propyl, n -butyl, sec -butyl and tert -butyl groups in the para -position to the azo group have been compared with those containing methyl and trifluoromethyl groups. The behaviour of dyes containing a fluoro group was also studied using 19F NMR spectroscopy. Aqueous solutions of sodium 1-(4- sec -butylphenylazo)-2-hydroxy-6-naphthalene sulphonate at concentrations greater than 0.01 mol dm,3 became gelatinous, whereas the other dyes containing alkyl groups did not show this effect. Although the gelation of aqueous dye solutions of fluorinated dyes has been reported previously, it had not been noticed with dyes containing hydrocarbon chains. Aggregation constants have been determined, and the thermodynamic parameters found to be influenced by chain branching and by the number of carbon atoms present. Important information has been established about the spatial arrangement of fluorine in the aromatic ring. [source]