Minimum Tillage (minimum + tillage)

Distribution by Scientific Domains


Selected Abstracts


Factors controlling aggregation in a minimum and a conventionally tilled undulating field

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2007
S. De Gryze
Summary Wind and water erosion induce breakdown of soil aggregates and loss of soil organic matter. Whereas most of the relations between aggregation and its driving factors have been established on a plot scale, these relations might be very different within an undulating landscape where both erosion (by wind or water) and deposition occur. The aim of this study was to investigate to what degree spatial patterns in soil variables influence spatial patterns in aggregation under different tillage intensities. We studied an agricultural field of about 3 ha in the silty region of Belgium. The site was split into a conventional tillage (CT) and a minimum tillage (MT) system. Within the field, 396 geo-referenced surface soil samples (0,5 cm) were taken and analyzed for organic matter content, quantity of aggregates and a number of other soil properties. Under CT, 28.5% of the total sample variation was explained by the occurrence of depositional areas, 20.8% by the amount of soil organic matter, and 13.8% by the presence of a clay-rich B horizon which surfaced due to progressive water and tillage erosion. Regression analysis revealed that 27% of the variation in the quantity of macroaggregates (>0.25 mm) was accounted for by these three factors. Under MT, 27.1% of the total sample variation was related to the surface cover of Tertiary sand, 22.6% to the amount of soil organic matter, and 13% to erodibility. These three factors explained 53% of the variation in the quantity of macroaggregates. In the CT system, the correlation between grass- or maize- carbon and the quantity of macroaggregates was strongly linked to erodibility, while this was not the case in the MT system. We concluded that at this site, macroaggregation is dominated by landscape-scale processes (such as water or tillage erosion) rather than determined by the commonly considered local variables (such as small variations in texture or organic matter content). [source]


Soil Conservation Tillage Effects on Yield and Water Use Efficiency on Irrigated Crops in Central Italy

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2008
R. Casa
Abstract Despite possible agronomic and environmental benefits, the diffusion of soil conservation tillage systems in Italy is currently rather low. The aim of this study was to compare the performance of different soil tillage techniques, in an effort to identify suitable soil management options for irrigated crops in Central Italy. An experiment was carried out on maize and soybean from April to October in two consecutive years (1993 and 1994) in Maccarese (a coastal location near Rome). The systems compared were: conventional mouldboard ploughing (CT), minimum tillage, ridge tillage and no-tillage (NT). In 1993, actual crop evapotranspiration was measured throughout the growing season on NT and CT soybean, using a micrometeorological technique. No significant differences due to soil tillage were found for grain yield and yield irrigation water use efficiency (IWUEy), except for soybean in 1994, in which yields and IWUEy were 59 % higher on conservation tillage treatments compared with CT. In 1994 soybean yield water use efficiency was 10.1 and 9.5 kg ha,1 mm,1 for NT and CT respectively. The results suggest that the adoption of soil conservation tillage is feasible, for the specific cropping system, with equivalent or better performances as conventional tillage. [source]


Seed germination ecology of Portulaca oleracea L.: an important weed of rice and upland crops

ANNALS OF APPLIED BIOLOGY, Issue 1 2009
B.S. Chauhan
Abstract Portulaca oleracea, a C4 species, is reported to be a serious weed in 45 crops in 81 countries. Experiments were conducted in the laboratory, the screenhouse and the field to determine the influence of environmental factors on seed germination and seedling emergence of P. oleracea. In the laboratory, germination in the dark was low and was not influenced by the tested temperatures (35/25°C, 30/20°C and 25/15°C alternating day/night temperatures). In the light/dark regime, however, germination was lower at 25/15°C and 35/25°C than at 30/20°C (70%, 75% and 81% germination, respectively). In conditions of 106 mM sodium chloride or ,0.34 MPa osmotic potential, seeds germinated to only 50% of maximum germination of the control. Germination was not influenced by buffered pH solutions ranging from 5 to 9. In the screenhouse, germination was greatest for seeds placed on the soil surface, but emergence declined with increasing seed burial depth in soil; no seedlings emerged from the depth of 2 cm. Seedling emergence and seedling dry matter were markedly reduced by the addition of rice residue to the soil surface at rates equivalent to 4 to 6 t ha,1. In the field, seedling emergence of P. oleracea was greater under zero till (ZT) (17,20%) than under minimum tillage (6,10%), a likely reflection of low seed burial and exposure of seeds to light with a ZT system. This study identifies some of the factors enabling P. oleracea to be a widespread weed in the humid tropics, and the information could contribute to improved control strategies. [source]


Adapting wheat cultivars to resource conserving farming practices and human nutritional needs

ANNALS OF APPLIED BIOLOGY, Issue 4 2005
R M TRETHOWAN
Summary As farmers increasingly adopt resource conserving farming practices, there is a need for wheat cultivars that better adapt to the changing environment and the nutritional needs of people, particularly those living in developing countries. Improved adaptation to zero and minimum tillage, better water use efficiency, improved root health, durable resistance to foliar diseases and enhanced nutritional value of the grain are key selection criteria for plant breeders. Significant responses to selection for these constraints have been achieved at the International Maize and Wheat Improvement Center (CIMMYT), by selecting segregating populations and advanced lines in carefully managed tillage, moisture deficit and heat stressed environments, that correlate with key spring wheat growing environments globally. Root health has been improved through a combination of marker assisted selection and disease bioassays, and the nutritional value of wheat grain has been enhanced using genetic variation for high Fe and Zn grain content found among tetraploid wheat ancestral species. [source]


Sustainable production of crops and pastures under drought in a Mediterranean environment

ANNALS OF APPLIED BIOLOGY, Issue 2 2004
NEIL C TURNER
Summary Mediterranean environments are characterised by cool wet winters and hot dry summers. While native vegetation in Mediterranean-climatic zones usually comprises a mixture of perennial and annual plants, agricultural development in the Mediterranean-climatic region of Australia has led to the clearing of the perennial vegetation and its replacement with annual crops and pastures. In the Mediterranean environments of southern Australia this has led to secondary (dryland) salinisation. In order to slow land degradation, perennial trees and pasture species are being reintroduced to increase the productivity of the saline areas. The annual crops and pastures that form the backbone of dryland farming systems in the Mediterranean-climatic zone of Australia are grown during the cool wet winter months on incoming rainfall and mature during spring and early summer as temperatures and rates of evaporation rise and rainfall decreases. Thus, crop and pasture growth is usually curtailed by terminal drought. Where available, supplementary irrigation in spring can lead to significant increases in yield and water use efficiency. In order to sustain production of annual crops in Mediterranean environments, both agronomic and genetic options have been employed. An analysis of the yield increases of wheat in Mediterranean-climatic regions shows that there has generally been an increase in the yields over the past decades, albeit at a lower rate than in more temperate regions. Approximately half of this increase can be attributed to agronomic improvements and half to genetic improvements. The agronomic improvements that have been utilised to sustain the increased yields include earlier planting to more closely match crop growth to rainfall distribution, use of fertilisers to increase early growth, minimum tillage to enable earlier planting and increase plant transpiration at the expense of soil evaporation, rotations to reduce weed control and disease incidence, and use of herbicides, insecticides and fungicides to reduce losses from weeds, insects and disease. Genetic improvements include changing the phenological development to better match the rainfall, increased early vigour, deeper rooting, osmotic adjustment, increased transpiration efficiency and improved assimilate storage and remobilisation. Mediterranean environments that are subjected annually to terminal drought can be both environmentally and economically sustainable, but to maximise plant water use efficiency while maintaining crop productivity requires an understanding of the interaction between genotypes, environment and management. [source]