Minimum Cost (minimum + cost)

Distribution by Scientific Domains


Selected Abstracts


The application of spreadsheets to the analysis and optimization of systems and processes in the teaching of hydraulic and thermal engineering

COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, Issue 4 2006
A. Rivas
Abstract This article shows the capability of current spreadsheets to define, analyze and optimize models of systems and processes. Specifically, the Microsoft spreadsheet Excel is used, with its built-in solver, to analyze and to optimize systems and processes of medium complexity, whose mathematical models are expressed by means of nonlinear systems of equations. Two hydraulic and thermal engineering-based application examples are presented, respectively: the analysis and optimization of vapor power cycles, and the analysis and design of piping networks. The mathematical models of these examples have been implemented in Excel and have been solved with the solver. For the power cycles, the thermodynamic properties of water have been calculated by means of the add-in TPX (Thermodynamic Properties for Excel). Performance and optimum designs are presented in cases studies, according to the optimization criteria of maximum efficiency for the power cycle and minimum cost for the piping networks. © 2006 Wiley Periodicals, Inc. Comput Appl Eng Educ 14: 256,268, 2006; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20085 [source]


Efficient allocation of resources to prevent HIV infection among injection drug users: the Prevention Point Philadelphia (PPP) needle exchange program

HEALTH ECONOMICS, Issue 2 2006
Zoë K. Harris
Abstract The objective of this study is to determine the allocation of resources within a multi-site needle exchange program (NEP) that achieves the largest possible reduction in new HIV infections at minimum cost. We present a model that relates the number of injection drug user (IDU) clients and the number of syringes exchanged per client to both the costs of the NEP and the expected reduction in HIV infections per unit time. We show that cost-effective allocation within a multi-site NEP requires that sites be located where the density of IDUs is highest, and that the number of syringes exchanged per client be equal across sites. We apply these optimal allocation rules to a specific multi-site needle exchange program, Prevention Point Philadelphia (PPP). This NEP, we find, needs to add 2 or 3 new sites in neighborhoods with the highest density of IDU AIDS cases, and to increase its total IDU client base by about 28%, from approximately 6400 to 8200 IDU clients. The case-study NEP also needs to increase its hours of operation at two existing sites, where the number of needles distributed per client is currently sub-optimal, by 50%. At the optimal allocation, the estimated cost per case of HIV averted would be $2800 (range $2300,$4200). Such a favorable cost-effectiveness ratio derives primarily from PPP's low marginal costs per distributed needle. Copyright © 2005 John Wiley & Sons, Ltd. [source]


A new delay-constrained algorithm for multicast routing tree construction

INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 10 2004
Mohamed Aissa
Abstract New multimedia applications provide guaranteed end-to-end quality of service (QoS) and have stringent constraints on delay, delay-jitter, bandwidth, cost, etc. The main task of QoS routing is to find a route in the network, with sufficient resources to satisfy the constraints. Most multicast routing algorithms are not fast enough for large-scale networks and where the source node uses global cost information to construct a multicast tree. We propose a fast and simple heuristic algorithm (EPDT) for delay-constrained routing problem for multicast tree construction. This algorithm uses a greedy strategy based on shortest-path and minimal spanning trees. It combines the minimum cost and the minimum radius objectives by combining respectively optimal Prim's and Dijkstra's algorithms. It biases routes through destinations. Besides, it uses cost information only from neighbouring nodes as it proceeds, which makes it more practical, from an implementation point of view. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Some ideas for QFT research

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 7 2003
Isaac Horowitz
Feedback theory is much less popular now than 5 years ago. However, there is little question that the problem of achieving desired system tolerances from uncertain plants, at minimum cost of feedback, will remain an important, enduring one for many future generations. Although much progress has been made, it is minuscule in comparison with the extent of the problem. The purpose here is to suggest some significant QFT research problems, some tantalizingly on the boundary of the unknown. There have been in the past many suggestions for improvements in feedback synthesis. Most e.g. the Smith Regulator (Int. J. Control 1983;38:977) have been illusory, because they were formulated in a qualitative context, without the disciplines of quantitative uncertainty and performance specifications, degrees of freedom, sensor noise, plant modification, etc. Without such disciplines, it is impossible to properly evaluate competing techniques. The reader is referred to the 1991 Survey paper for some background, Horowitz (Int. J. Control 1991;53(2):255). Copyright © 2003 John Wiley & Sons, Ltd. [source]


Quantitative framework for reliable safety analysis

AICHE JOURNAL, Issue 1 2002
Haitao Huang
The effectiveness of any methodology used to identify hazards in chemical processes affects both safety and economics. To achieve maximum safety at minimum cost, a conservative, but realistic, analysis must be carried out. An approach to hazard identification is proposed based on a detailed process model which includes nonlinear dynamics and uncertainty. A new modeling framework, the region-transition model (RTM), is developed, which enables the simulation of regions of the operating space through an extension of the hybrid state transition system formalism. The RTM is illustrated on a nonlinear batch reactor with parameter uncertainty. A safety-verification algorithm identifies regions of the input space (initial conditions and external inputs) which guarantee safe operation. The algorithm is successfully applied to three examples: a tank with overflow and underflow, a batch reactor with an exothermic reaction, and a CSTR with feed preheating. [source]


Searching for DNA in museum specimens: a comparison of sources in a mammal species

MOLECULAR ECOLOGY RESOURCES, Issue 3 2010
M. CASAS-MARCE
Abstract The number of genetic studies that use preserved specimens as sources of DNA has been steadily increasing during the last few years. Therefore, selecting the sources that are more likely to provide a suitable amount of DNA of enough quality to be amplified and at the minimum cost to the original specimen is an important step for future research. We have compared different types of tissue (hides vs. bones) from museum specimens of Iberian lynx and multiple alternative sources within each type (skin, footpad, footpad powder, claw, diaphysis, maxilloturbinal bone, mastoid process and canine) for DNA yield and probability of amplification of both mitochondrial and nuclear targets. Our results show that bone samples yield more and better DNA than hides, particularly from sources from skull, such as mastoid process and canines. However, claws offer an amplification success as high as bone sources, which makes them the preferred DNA source when no skeletal pieces have been preserved. Most importantly, these recommended sources can be sampled incurring minimal damage to the specimens while amplifying at a high success rate for both mitochondrial and microsatellite markers. [source]


The evolution of secondary metabolism , a unifying model

MOLECULAR MICROBIOLOGY, Issue 5 2000
Richard D. Firn
Why do microbes make secondary products? That question has been the subject of intense debate for many decades. There are two extreme opinions. Some argue that most secondary metabolites play no role in increasing the fitness of an organism. The opposite view, now widely held, is that every secondary metabolite is made because it possesses (or did possess at some stage in evolution) a biological activity that endows the producer with increased fitness. These opposing views can be reconciled by recognizing that, because of the principles governing molecular interactions, potent biological activity is a rare property for any molecule to possess. Consequently, in order for an organism to evolve the rare potent, biologically active molecule, a great many chemical structures have to be generated, most of which will possess no useful biological activity. Thus, the two sides of the debate about the role and evolution of secondary metabolism can be accommodated within the view that the possession of secondary metabolism can enhance fitness, but that many products of secondary metabolism will not enhance the fitness of the producer. It is proposed that secondary metabolism will have evolved such that traits that optimize the production and retention of chemical diversity at minimum cost will have been selected. Evidence exists for some of these predicted traits. Opportunities now exist to exploit these unique properties of secondary metabolism to enhance secondary product diversity and to devise new strategies for biotransformation and bioremediation. [source]


A mean-variance model for the minimum cost flow problem with stochastic arc costs

NETWORKS: AN INTERNATIONAL JOURNAL, Issue 3 2010
Stephen D. Boyles
Abstract This article considers a minimum cost flow problem where arc costs are uncertain, and the decision maker wishes to minimize both the expected flow cost and the variance of this cost. Two optimality conditions are given, one based on cycle marginal costs, and another based on concepts of network equilibrium. Solution methods are developed based on these conditions. The value of information is also studied, and efficient approximation techniques are developed for the specific case of learning the exact cost of one or more arcs a priori. Finally, numerical results compare the solution methods developed in this work: the minimum mean cycle canceling algorithm performs better on all of the networks tested, although the equilibrium-based algorithm is more competitive for large networks. Solution sensitivity to input parameters is also examined, as is the performance of the approximation techniques for the value of information. Approximation techniques based on arc cost distributions were found to outperform those based on properties of optimal flows. © 2009 Wiley Periodicals, Inc. NETWORKS, 2010 [source]


Approximation algorithm for the group Steiner network problem

NETWORKS: AN INTERNATIONAL JOURNAL, Issue 2 2007
Michal Penn
Abstract In this article we study the group Steiner network problem, which is defined in the following way. Given a graph G = (V,E), a partition of its vertices into K groups and connectivity requirements between the different groups, the aim is to find simultaneously a set of representatives, one for each group, and a minimum cost connected subgraph that satisfies the connectivity requirements between the groups (representatives). This problem is a generalization of the Steiner network problem and the group Steiner tree problem, two known NP-complete problems. We present an approximation algorithm for a special case of the group Steiner network problem with an approximation ratio of min {2(1 + 2x),2I}, where I is the cardinality of the largest group and x is a parameter that depends on the cost function. © 2006 Wiley Periodicals, Inc. NETWORKS, Vol. 49(2), 160,167 2007 [source]


A network flow algorithm to minimize beam-on time for unconstrained multileaf collimator problems in cancer radiation therapy

NETWORKS: AN INTERNATIONAL JOURNAL, Issue 1 2005
Ravindra K. Ahuja
Abstract In this article, we study the modulation of intensity matrices arising in cancer radiation therapy using multileaf collimators. This problem can be formulated by decomposing a given m × n integer matrix into a positive linear combination of (0, 1) matrices with the strict consecutive 1's property in rows. We consider a special case in which no technical constraints have to be taken into account. In this situation, the rows of the intensity matrix are independent of each other and the problem is equivalent to decomposing m intensity rows,independent of each other,into positive linear combinations of (0, 1) rows with the consecutive 1's property. We demonstrate that this problem can be transformed into a minimum cost flow problem in a directed network that has the following special structures: (1) the network is acyclic; (2) it is a complete graph (that is, there is an arc (i, j) whenever i < j); (3) each arc cost is 1; and (4) each arc is uncapacitated (that is, it has infinite capacity). We show that using this special structure, the minimum cost flow problem can be solved in O(n) time. Because we need to solve m such problems, the total running time of our algorithm is O(nm), which is an optimal algorithm to decompose a given m × n integer matrix into a positive linear combination of (0, 1) matrices. © 2004 Wiley Periodicals, Inc. NETWORKS, Vol. 45(1), 36,41 2005 [source]


Controlling western corn rootworm larvae with entomopathogenic nematodes: effect of application techniques on plant-scale efficacy

JOURNAL OF APPLIED ENTOMOLOGY, Issue 5 2010
S. Toepfer
Abstract The three larval instars of western corn rootworm (Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae) feed on the roots of maize, Zea mays (L.). The effects of six application techniques on the plant-scale efficacy of the entomopathogenic nematode species, Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), in controlling D. v. virgifera populations were assessed in seven field plot experiments in southern Hungary between 2004 and 2007. Approximately 230 000 nematodes were applied per row metre using four different stream spray techniques; or, alternatively 400 000 nematodes per square metre using two different flat spray techniques. Nematode efficacy was assessed by comparing the number of emerging adult D. v. virgifera, and root damage between treatments and untreated controls. All tested nematode application techniques reduced D. v. virgifera density by at least 50% (on average across fields and years). The highest reduction in D. v. virgifera density was 68% and occurred when nematodes were applied into the soil together with maize sowing using a fluid solid stream. Rainfall, the day before application likely increased the control efficacy of H. bacteriophora. Using the 0.00,3.00 node injury damage rating scale, we estimated that potential root damage was prevented by 25,79% when H. bacteriophora was applied. Although, H. bacteriophora can effectively be applied with all of the techniques tested, for optimum performance and minimum costs, it is suggested that the nematodes be applied as follows: (i) as a stream requiring 8,10 times less volume of water than flat sprays, or as a granule requiring no water, and (ii) into the soil when sowing maize, requiring less water than soil surface sprays and avoiding the destruction of nematodes by UV radiation and additional machinery use. [source]