Home About us Contact | |||
Mineralogical
Terms modified by Mineralogical Selected AbstractsCLAY RESOURCES AND TECHNICAL CHOICES FOR NEOLITHIC POTTERY (CHALAIN, JURA, FRANCE): CHEMICAL, MINERALOGICAL AND GRAIN-SIZE ANALYSES*ARCHAEOMETRY, Issue 1 2007R. MARTINEAU Many authors have considered pottery manufacturing constraints and sociocultural elements as factors in change in past civilizations over time. The main issue of this research is to better understand the reasons for changes, or choices, in pottery raw materials. The very precise and detailed stratigraphy and cultural succession of occupations is based on dendrochronological data from the lake-dwelling sites of Chalain (Jura, France). Petrographic, palaeontological and chemical analyses were used to determine the nature and origins of the raw materials used by the Neolithic potters. Stratigraphy and dendrochronological data were used to reconstruct in detail the evolution dynamics of fabric changes. Several raw material sources were identified for many of the pottery groups. Each of them was sampled for qualitative experimental tests of pottery forming. The experimental results show a high variability between the sediments tested. This variability was quantitatively estimated by XRF, XRD, the Rietveld method, calcium carbonate quantification and laser grain-size analyses of matrices, indirect measures of plasticity. These analytical results allow a better understanding of the differences observed in the experimental tests. On the basis of these experimental and analytical results, changing parameters such as pottery manufacturing constraints, mineralogical characteristics of raw materials and sociocultural factors are considered. In conclusion, all the social and technical parameters, in each archaeological context, must be taken into account for a better understanding of the changes occurring throughout the chronological sequence. [source] The role of mineralogy, geochemistry and grain size in badland development in Pisticci (Basilicata, southern Italy)EARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2007V. Summa Abstract Mineralogical, geochemical and grain-size composition of soil and pore-water chemistry parameters were characterized on both eroded (south-facing) and non-eroded (north-facing) clayey-silt slopes in the Basilicata region (southern Italy). Only a few grain-size parameters and clay mineralogy discriminate eroded from non-eroded substrates. Compared with the latter, the former have fractions of over 63 µm and 1,4 µm lower and fractions 4,63 µm higher. Grain-size characters of crusts did not discriminate with respect to substrate. Bulk rock mineralogy was not distinctive, but the clay mineral assemblage shows that the eroded slope is enriched in kaolinite, mixed layers (illite,smectite) and chlorite, whereas illite decreases, although overlaps are common. Chemical data enable discrimination between eroded and non-eroded slopes. pH, SAR (sodium adsorption ratio), TDS (total dissolved salts) and PS (percentage of sodium) are distinctive parameters for both eroded and non-eroded slopes. TDS increases in depth in the non-eroded slope, whereas the maximum TDS is just below the crust in the eroded one. On average, eroded substrates are higher in pH, SAR and PS than non-eroded ones. The ESP (exchangeable sodium percentage) of the eroded slope has a higher value than the non-eroded one. Crusts are less dispersive than eroded substrates, and non-eroded substrates behave as crusts. This suggests that the portion of the slope most severely exposed to weathering tends to stabilize, due to strong decreases in SAR, PS and ESP. Several diagrams reported in the literature show similarly anomalous crust samples on eroded slopes, compared with other samples coming from greater depths on eroded slopes. In the present case study, the exchangeable form of Na characterizes crusts more than the soluble form. This study describes the erosional mechanism, which involves morphological and geographic exposure and climatic elements, as well as grain size, mineralogy, chemistry and exchangeable processes of soils. Copyright © 2006 John Wiley & Sons, Ltd. [source] Mineralogical and Geochemical Characterization of Beryl-Bearing Granitoids, Eastern Desert, Egypt: Metallogenic and Exploration ConstraintsRESOURCE GEOLOGY, Issue 2 2009Hamdy M. Abdalla Abstract Mineral chemistry and geochemical characteristics of beryl-bearing granitoids in Eastern Desert of Egypt, were examined in order to identify the metallogenetic processes of the host granitoids. The investigated Be-bearing granitoids and type occurrences are classified into two groups: (i) peraluminous, Ta , Nb + Sn + Be ± W-enriched, Li-albite granite (e.g. Nuweibi and Abu Dabbab); and (ii) metasomatized, Nb >> Ta + Sn + Be ± W ± Mo-enriched alkali feldspar granite (i.e. apogranite; e.g. Homr Akarem, Homr Mikpid and Qash Amir). In these two groups, beryl occurs as stockwork greisen veins, greisen bodies, beryl-bearing cassiterite ± wolframite quartz veins, dissemination, and miarolitic pegmatites. Beryl of the Be-granitoids, particularly those of miarolitic pegmatites, contains appreciable contents of Fe, Na, and H2O. An important feature of the Be-apogranites is the occurrence of white mica as the sole mafic mineral in the unaltered alkali feldspar granite in lower zones. Presence of white mica as volatile-rich pockets suggests that the melt underwent disequilibrium crystallization, rapid nucleation rates, and exsolving and expulsion of volatiles. [source] GLAZED CERAMIC MANUFACTURING IN SOUTHERN TUSCANY (ITALY): EVIDENCE OF TECHNOLOGICAL CONTINUITY THROUGHOUT THE MEDIEVAL PERIOD (10TH,14TH CENTURIES),ARCHAEOMETRY, Issue 1 2008C. FORTINA Archaeometric investigation allowed the characterization of two important classes of ceramics: ,vetrina sparsa' and ,invetriata grezza'. Their archaeological peculiarity makes them particularly suited for tracing the evolution of glaze manufacturing in southern Tuscany throughout the medieval period (10th,14th centuries). These ceramics were found in different sites of historical importance, and also from a mining perspective. Local copper, lead, zinc and iron mineralizations supported the growth of several settlements in the vicinity of the mines. The many castles and different archaeological finds (ceramics, glazed ceramic, slag etc.) attest to the intense mineral exploitation of the area from at least the first millennium bc up to the modern period. In light of these geological and archaeological characteristics, archaeometric investigation was intended to provide insight into ancient technical knowledge of ceramic glazing and to determine the source area for raw materials in the medieval period (10th,14th centuries). Ceramic bodies were analysed through OM, XRDp, SEM,EDS and XRF, while coatings were investigated through SEM,EDS. Mineralogical, petrographic and chemical analyses revealed slightly different preparation and firing processes for the two classes of ceramics. These data suggest the continuity through the centuries of the ,vetrina sparsa' and ,invetriata grezza' production technology. The mineralogical phases, such as monazite, xenotime, zircon, barite, Ti oxide, ilmenite, titanite, tourmaline and ilvaite, and the lithic (intrusive and volcanic) fragments detected within the ceramic bodies suggest a source area in the vicinity of the Campiglia mining district. Lastly, the presence of Cu,Zn,Pb (Ag) and Fe sulphide mineralizations (materials used to produce glaze) in the area supports the hypothesis of local manufacture. [source] Mineralogical And Chemical Investigations Of Bloomery Slags From Prehistoric (8th Century Bc To 4th Century Ad) Iron Production Sites In Upper And Lower Lusatia, GermanyARCHAEOMETRY, Issue 2 2001R. B. Heimann More than 400 fayalitic bloomery slags from prehistoric iron production sites in Upper and Lower Lusatia, eastern Germany, as well as bog iron ore samples and intermediary samples of the smelting process, were analysed by chemical and mineralogical techniques. While the precursor bog iron ores exploited in the two regions under investigation were very similar in composition, consisting of low-manganese/low-barium as well as high-manganese/high-barium types of ore, pronounced differences in slag composition were detected. Slags from 17 investigated sites in Upper Lusatia showed average P2O5 contents between 1 and 3 mass%, whereas slags from 15 investigated sites in Lower Lusatia were generally much richer in phosphorus, reaching values as high as 7 mass% P2O5. Since a reasonable correlation exists between calcium and phosphorus contents in the slags of the latter sites, it is conjectured that deliberate addition of CaO to the ore/charcoal charge of the bloomery furnace may have taken place in order to fix the phosphorus in the slags effectively. In many samples, this conjecture is being supported by the detection of a slag mineral Ca,Fe phosphate Ca9,xFe1+x(PO4)7 that presumably crystallized from a residual phosphorus-rich melt and shows a cotectic relationship to both Ca-rich fayalite and wustite, as well as to members of the solid solution series magnetite,hercynite. [source] Petrology, Mineralogy and Geochemisty of Antarctic Mesosiderite GRV 020175: Implications for Its Complex Formation HistoryACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2010Linyan WANG Abstract: GRV 020175 is an Antarctic mesosiderite, containing about 43 vol% silicates and 57 vol% metal. Metal occurs in a variety of textures from irregular large masses, to veins penetrating silicates, and to matrix fine grains. The metallic portion contains kamacite, troilite and minor taenite. Terrestrial weathering is evident as partial replacement of the metal and troilite veins by Fe oxides. Silicate phases exhibit a porphyritic texture with pyroxene, plagioclase, minor silica and rare olivine phenocrysts embedded in a fine-grained groundmass. The matrix is ophitic and consists mainly of pyroxene and plagioclase grains. Some orthopyroxene phenocrysts occur as euhedral crystals with chemical zoning from a magnesian core to a ferroan overgrowth; others are characterized by many fine inclusions of plagioclase composition. Pigeonite has almost inverted to its orthopyroxene host with augite lamellae, enclosed by more magnesian rims. Olivine occurs as subhedral crystals, surrounded by a necklace of tiny chromite grains (about 2,3 ,m). Plagioclase has a heterogeneous composition without zoning. Pyroxene geothermometry of GRV 020175 gives a peak metamorphic temperature (,1000°C) and a closure temperature (,875°C). Molar Fe/Mn ratios (19,32) of pyroxenes are consistent with mesosiderite pyroxenes (16,35) and most plagioclase compositions (An87.5,96.6) are within the range of mesosiderite plagioclase grains (An88,95). Olivine composition (Fo53.8) is only slightly lower than the range of olivine compositions in mesosiderites (Fo55,90). All petrographic characteristics and chemical compositions of GRV 020175 are consistent with those of mesosiderite and based on its matrix texture and relatively abundant plagioclase, it can be further classified as a type 3A mesosiderite. Mineralogical, petrological, and geochemical studies of GRV 020175 imply a complex formation history starting as rapid crystallization from a magma in a lava flow on the surface or as a shallow intrusion. Following primary igneous crystallization, the silicate underwent varying degrees of reheating. It was reheated to 1000°C, followed by rapid cooling to 875°C. Subsequently, metal mixed with silicate, during or after which, reduction of silicates occurred; the reducing agent is likely to have been sulfur. After redox reaction, the sample underwent thermal metamorphism, which produced the corona on the olivine, rims on the inverted pigeonite phenocrysts and overgrowths on the orthopyroxene phenocrysts, and homogenized matrix pyroxenes. Nevertheless, metamorphism was not extensive enough to completely reequilibrate the GRV 020175 materials. [source] Mineralogical and Petrological Characteristics of the Neoproterozoic Orthoamphibolite and Orthogneisses in the Mutki Area, the Bitlis Massif, Southeast TurkeyACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2010Kerim KOCAK Abstract: The rocks form as amphibolite ± garnet ± epidote and orthogneisses in the Pan-African basement of the Bitlis Massif. The petrochemical data of the studied metamorphic rocks suggest different igneous protoliths ranging from calcalkaline basalt to andesite in composition. Petrochemically, the rocks can be classified as group 1 (low Zr and La) and group 2 (high Zr and La), all showing various enrichments in large ion lithophiles and light rare earth elements, and a depletion in high-field strength elements, suggestive of a destructive plate margin setting. The protoliths of the all samples might have formed mostly by the partial melting of an enriched source, possibly coupled with the fractional crystallization of plagioclase, apatite, and titaniferous magnetite ± olivine ± clinopyroxene ± amphibole in relation with subduction-related magmatism neighboring the Andean-type active margins of Gondwana. The group 2 samples could, however, be generated by a relatively lower degree of the partial melting of an inhomogeneous source with a preponderance of a high-level, fractional crystallization process in comparison to group 1. The protoliths of the samples were metamorphosed up to amphibolite facies conditions, which destroys original igneous texture and mineral assemblages. Geothermobarometric calculations show that the metamorphic rocks are finally equilibrated between 540 and 610°C and ,5 kbars, following a clockwise P-T-t path. [source] Mineralogical and Geochemical Constraints on Arsenic Mobility in a Philippine Geothermal FieldACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2006Chelo PASCUA Abstract, Arsenic is usually associated with sulphide minerals formed in the geothermal environment. However, sulphide minerals are prone to dissolution after contact with meteoric water under surface oxidizing conditions. Secondary precipitates that form from the dissolution of the primary sulfides exert a greater influence on arsenic mobility in the geothermal environment. Fe-hydroxides have very good affinity with dissolved arsenate and are stable under most surface oxidizing conditions. Both amorphous silica directly precipitated from geothermal fluids and possibly a kaolinite alteration can host a small significant amount of arsenic. These silicates are also more stable under a wide range of pH and redox conditions. [source] Patterns of damage in igneous and sedimentary rocks under conditions simulating sea-salt weatheringEARTH SURFACE PROCESSES AND LANDFORMS, Issue 1 2003C. Cardell Abstract A saline-spray artificial ageing test was used to simulate the effects produced in granites and sedimentary rocks (calcarenites, micrites and breccia) under conditions in coastal environments. Three main points were addressed in this study: the durability of the different kinds of rock to salt decay, the resulting weathering forms and the rock properties involved in the weathering processes. For this, mineralogical and textural characterization of each of the different rocks was carried out before and after the test. The soluble salt content at different depths from the exposed surfaces was also determined. Two different weathering mechanisms were observed in the granite and calcareous rocks. Physical processes were involved in the weathering of granite samples, whereas dissolution of calcite was also involved in the deterioration of the calcareous rocks. We also showed that microstructural characteristics (e.g. pore size distribution), play a key role in salt damage, because of their influence on saline solution transport and on the pressures developed within rocks during crystallization. Copyright © 2003 John Wiley & Sons, Ltd. [source] Bog Iron Ores and their Potential Role in Arsenic Dynamics: An Overview and a "Paleo Example"ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 6 2008A. Banning Abstract Bog iron ores (BIOs), i.e. terrestrial accumulations of iron (Fe) minerals forming within the zone of groundwater oscillation, have been described in several regions in Germany and other countries. Since BIOs are composed of a variety of Fe minerals, primarily amorphous Fe hydroxides, they are likely to have an influence on the arsenic (As) dynamics of an area, as these minerals represent important natural As sources and sinks. In this study, mineralogical research results (XRD, microscopy) of altered BIOs of Tertiary age ("paleo" BIOs or PBIOs), occurring within Cretaceous sands in an area of North Rhine-Westphalia, are briefly presented. Genesis and mineralogical evolution of the categorized five different types of PBIOs, along with hydrogeochemical data from the literature, are discussed and compared to studies describing Holocene BIOs from other areas. In doing so, striking similarities (depositional environment, substratum, Fe source and its transport, geochemical evolution, and mineralogy) became evident. Differences in mineralogical and chemical composition can be attributed to the longer period of oxidation that the PBIOs have undergone (Fe hydroxide "aging"). This process is still ongoing (most of the groundwaters in the area plot in the goethite stability field) and leads to a higher stability of the Fe phases and thus, a stronger As retention. The known impact of the PBIOs on the As budget of the study area (they represent the source for elevated As concentrations in soils) can be transferred to more recent environments fostering BIO formation. These are likely to be even more important As sinks , and sources , as they contain higher Fe concentrations, higher shares of potentially mobile As and highly variable redox conditions which might lead to an As output from the BIOs into groundwater, soils and plants. Therefore, BIOs and their potential role in As behaviour are not only of scientific, but also of public interest. [source] Compositional analysis of Yayoi-Heian period ceramics from Okinawa: Examining the potential for provenance studyGEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 8 2006Scott M. Fitzpatrick In Okinawa, locally produced pottery dates back to the Initial Jomon period (,6500 14C yr B.P.). Later in time, especially during the Early Yayoi-Heian period (,300 B.C.,A.D. 300), ceramic assemblages appear to contain mainland (Japan) Yayoi pottery. A greater number of these sherds present in Okinawa over time coincide with an increasing amount of interaction with mainland Japan, as evidenced by other exchange items. In this preliminary study, the authors analyzed sherds from several Early Yayoi-Heian period deposits from sites in Okinawa using thin-section petrography and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The objective was to examine the applicability of these techniques for Okinawan ceramic provenance studies, assess intra- and intersite variation in mineralogical and chemical composition, and determine whether some sites exhibited a higher frequency of pottery from one locale versus another that might suggest the importation of pottery from mainland Japan. Results are equivocal, suggesting that the region's geological complexity may inhibit successful provenance study of ceramics using these and possibly other compositional techniques. © 2006 Wiley Periodicals, Inc. [source] Geomicrobiology of deep-sea deposits: estimating community diversity from low-temperature seafloor rocks and mineralsGEOBIOLOGY, Issue 2 2003Daniel R. Rogers ABSTRACT The role of deep-sea microbial communities in the weathering of hydrothermal vent deposits is assessed using mineralogical and molecular biological techniques. The phylogenetic diversity of varied deep-sea bare rock habitats associated with the oceanic spreading centre at the Juan de Fuca Ridge was accessed using restriction fragment length polymorphism (RFLP) and rDNA sequencing. The mineralogical composition of the deposits used for phylogenetic analysis was determined by X-ray diffraction in order to determine the proportion and composition of sulphide minerals, and to determine degree of alteration associated with each sample. RFLP analyses resulted in 15 unique patterns, or Operational Taxonomic Units (OTUs). Most environments examined were dominated by only one or two OTUs, which often comprised approximately 60% of the rDNA clones generated from that environment. Only one environment, the Mound, had a representative rDNA clone from every OTU identified in this study. For one other environment, ODP sediments, rDNA clones were all contained in a single OTU. The diversity of the microbial community is found to decrease with decreasing reactivity of the sulphide component in the samples and with increasing presence of alteration products. Phylogenetic analyses reveal that OTUs contain representatives of the epsilon-, beta- and gamma-subdivisions of the Proteobacteria. OTU1, which dominates clone libraries from every environment and is increasingly dominant with increasing rock alteration, is closely related to a group of chemolithoautotrophic iron-oxidizing bacteria that have been recently isolated from the deep sea. The apparent abundance and widespread distribution within the samples examined of the putative iron-oxidizing bacteria that may be represented by OTU1 suggests that this physiological group could play an important role in rock-weathering and carbon fixation at the seafloor. [source] Principal features of impact-generated hydrothermal circulation systems: mineralogical and geochemical evidenceGEOFLUIDS (ELECTRONIC), Issue 3 2005MIKHAIL V. NAUMOVArticle first published online: 14 JUL 200 Abstract Any hypervelocity impact generates a hydrothermal circulation system in resulting craters. Common characteristics of hydrothermal fluids mobilized within impact structures are considered, based on mineralogical and geochemical investigations, to date. There is similarity between the hydrothermal mineral associations in the majority of terrestrial craters; an assemblage of clay minerals,zeolites,calcite,pyrite is predominant. Combining mineralogical, geochemical, fluid inclusion, and stable isotope data, the distinctive characteristics of impact-generated hydrothermal fluids can be distinguished as follows: (i) superficial, meteoric and ground water and, possibly, products of dehydration and degassing of minerals under shock are the sources of hot water solutions; (ii) shocked target rocks are sources of the mineral components of the solutions; (iii) flow of fluids occurs mainly in the liquid state; (iv) high rates of flow are likely (10,4 to 10,3 m s,1); (v) fluids are predominantly aqueous and of low salinity; (vi) fluids are weakly alkaline to near-neutral (pH 6,8) and are supersaturated in silica during the entire hydrothermal process because of the strong predominance of shock-disordered aluminosilicates and fusion glasses in the host rocks; and (vii) variations in the properties of the circulating solutions, as well as the spatial distribution of secondary mineral assemblages are controlled by tempera ure gradients within the circulation cell and by a progressive cooling of the impact crater. Products of impact-generated hydrothermal processes are similar to the hydrothermal mineralization in volcanic areas, as well as in modern geothermal systems, but impacts are always characterized by a retrograde sequence of alteration minerals. [source] The genesis of the carbonatized and silicified ultramafics known as listvenites: a case study from the Mihal,çç,k region (Eski,ehir), NW TurkeyGEOLOGICAL JOURNAL, Issue 5 2006Mehmet Akbulut Abstract The Mihal,çç,k region (Eski,ehir) in NW Turkey includes an ophiolitic assemblage with a serpentinite-matrix mélange. The serpentinites of this mélange host silica-carbonate metasomatites which were previously named as listvenites. Our mineralogical and geochemical studies revealed that these alteration assemblages represent members of the listvenitic series, mainly the carbonate rocks, silica-carbonate rocks and birbirites, rather than true listvenites (sensu stricto). Tectonic activity and lithology are principal factors that control the formation of these assemblages. Carbonatization and silicification of the serpentinite host-rock is generated by CO2, SiO2 -rich H2O hydrothermal fluid which includes As, Ba, Sb and Sr. Low precious metal (Au, Ag) contents of the alteration assemblages indicate lack of these metals in the fluid. Primary assemblages of the alteration are carbonate rocks that are followed by silica-carbonate rocks and birbirites, respectively. Petrographic studies and chemical analyses suggested an alkaline and moderate to high temperature (350,400°C) fluid with low oxygen and sulphur fugacity for the carbonatization of the serpentinites. The low temperature phases observed in the subsequent silicification indicated that the fluid cooled during progressive alteration. The increasing Fe-oxide content and sulphur phases also suggested increasing oxygen and sulphur fugacity during this secondary process and silica-carbonate rock formation. The occurrence of birbirites is considered as a result of reactivation of tectonic features. These rocks are classified in two sub-groups; the Group 1 birbirites show analogous rare earth element (REE) trends with the serpentinite host-rock, and the Group 2 birbirites simulate the REE trends of the nearby tectonic granitoid slices. The unorthodox REE trend of Group 2 birbirites is interpreted to have resulted from a mobilization process triggered by the weathering solutions rather than being products of enrichment by the higher temperature hydrothermal activity. Copyright © 2006 John Wiley & Sons, Ltd. [source] K-Ar age determination, whole-rock and oxygen isotope geochemistry of the post-collisional Bizmi,en and Çalt, plutons, SW Erzincan, eastern Central Anatolia, TurkeyGEOLOGICAL JOURNAL, Issue 4 2005Ayten Önal Abstract Post-collisional granitoid plutons intrude obducted Neo-Tethyan ophiolitic rocks in central and eastern Central Anatolia. The Bizmi,en and Çalt, plutons and the ophiolitic rocks that they intrude are overlain by fossiliferous and flyschoidal sedimentary rocks of the early Miocene Kemah Formation. These sedimentary rocks were deposited in basins that developed at the same time as tectonic unroofing of the plutons along E,W and NW,SE trending faults in Oligo-Miocene time. Mineral separates from the Bizmi,en and Çalt, plutons yield K-Ar ages ranging from 42 to 46,Ma, and from 40 to 49,Ma, respectively. Major, trace, and rare-earth element geochemistry as well as mineralogical and textural evidence reveals that the Bizmi,en pluton crystallized first, followed at shallower depth by the Çalt, pluton from a medium-K calcalkaline, I-type hybrid magma which was generated by magma mixing of coeval mafic and felsic magmas. Delta 18O values of both plutons fall in the field of I-type granitoids, although those of the Çalt, pluton are consistently higher than those of the Bizmi,en pluton. This is in agreement with field observations, petrographic and whole-rock geochemical data, which indicate that the Bizmi,en pluton represents relatively uncontaminated mantle material, whereas the Çalt, pluton has a significant crustal component. Structural data indicating the middle Eocene emplacement age and intrusion into already obducted ophiolitic rocks, suggest a post-collisional extensional origin. However, the pure geochemical discrimination diagrams indicate an arc origin which can be inherited either from the source material or from an upper mantle material modified by an early subduction process during the evolution of the Neo-Tethyan ocean. Copyright © 2005 John Wiley & Sons, Ltd. [source] Palaeoclimate indicators (clay minerals, calcareous nannofossils, stable isotopes) compared from two successions in the late Jurassic of the Volga Basin (SE Russia)GEOLOGICAL JOURNAL, Issue 1 2002A. H. Ruffell Abstract A study of clay mineral and calcareous nannofossil abundances in late Jurassic,early Cretaceous sediments from the Volga Basin, SE Russia, is presented. From these results, we are able to compare some general patterns of mineralogical and palaeontological change for the Volga Basin to the palaeoclimate models developed for northern Europe and beyond. The two successions examined comprise calcareous mudstones with black organic-rich shale horizons, overlain by a series of phosphatic silty sands. Clay mineralogical results show a progressive decrease in kaolinite and the concomitant increase of smectite and illite through the middle Volgian, followed by an abrupt increase in kaolinite in the late Volgian. The clay mineral evidence suggests increasing aridity at the end of the Jurassic, similar, in part, to many western European successions. Because of differential settling of clay minerals, superimposed upon this possible climatic signature is likely to be the effect of relative sea-level change. Calcareous nannofossil analysis from a single section reveals a shift through the middle Volgian from low nutrient, warm water assemblages dominated by Watznaueria to cooler surface water and high nutrient assemblages dominated by Biscutum constans. These observations suggest that increased aridity is also associated with climatic cooling. Black shales are associated with increased productivity, higher sea levels and increases in smectite content. Hence, periods of low (chemical) hinterland weathering during semi-arid conditions are paradoxically associated with relatively nutrient-rich waters, and organic-rich shales. Comparison of published carbon and oxygen stable isotope results from this and other sections to the clay mineral and nannofossil data confirms the palaeoclimatic interpretation. This study significantly improves the published biostratigraphically constrained clay mineral database for this time period, because other European and North American successions are either non-marine (and thus poorly dated), absent (through penecontemporaneous erosion) or condensed. Copyright © 2002 John Wiley & Sons, Ltd. [source] Natural Attenuation Reactions at a Uranium Mill Tailings Site, Western U.S.A.GROUND WATER, Issue 1 2002Chen Zhu This paper presents a modeling analysis of the geochemical evolution of a contaminated sandy aquifer at a uranium mill tailings site in the western United States. The tailings pond contains fluids having a pH of 1.5 to 3.5 and high levels of As, Be, Cd, Cr, Pb, Mo, Ni, Se, 226Ra, 228Ra, 230Th, 238U, and 234U. Seepage of tailings fluids into the aquifer has formed a low-pH ground water plume. The reclamation plan is to install a low-permeability cover on the tailings pond to stop the seepage and allow the plume to be attenuated by reactions with the aquifer matrix and flushed by uncontaminated upgradient ground water. To evaluate this reclamation scenario, ground water and sediment core samples were analyzed along one flowpath. Speciation-solubility and mass-transfer modeling revealed two sets of chemical reactions for acid seepage and flushing, respectively. The current concentrations and distribution of ground water constituents can be interpreted as being controlled by stepwise pH-buffer reactions with calcite, amorphous aluminum hydroxide, and amorphous iron hydroxides. These buffer reactions divide the aquifer into zones of near-constant pH, separated by interface zones. For the flushing stage, it is predicted that reactions with surface-bound species will dominate the reaction paths, and more pore volumes are required to neutralize the plume than predicted by models that do not consider surface reactions. Direct mineralogical and surface analysis is needed to substantiate this assertion. [source] Water quality and hydrogeochemical characteristics of the River Buyukmelen, Duzce, TurkeyHYDROLOGICAL PROCESSES, Issue 20 2005Rustem Pehlivan Abstract The River Buyukmelen is located in the province of Duzce in northwest Turkey and its water basin is approximately 470 km2. The Aksu, Kucukmelen and Ugursuyu streams flow into the River Buyukmelen. It flows into the Black Sea with an output of 44 m3 s,1. The geological succession in the basin comprises limestone and dolomitic limestone of the Y,lanl, formation, sandstone, clayey limestone and marls of the Akveren formation, clastics and volcano-clastics of the Caycuma formation, and cover units comprised of river alluvium, lacutrine sediments and beach sands. The River Buyukmelen is expected to be a water source that can supply the drinking water needs of Istanbul until 2040; therefore, it is imperative that its water quality be preserved. The samples of rock, soil, stream water, suspended, bed and stream sediments and beach sand were collected from the Buyukmelen river basin. They were examined using mineralogical and geochemical methods. The chemical constituents most commonly found in the stream waters are Na+, Mg2+, SO2,4, Cl, and HCO3, in the Guz stream water, Ca2+ in the Abaza stream water, and K+ in the Kuplu stream water. The concentrations of Na+, K+, Ca2+, Mg2+, SO2,4, HCO,3, Cl,, As, Pb, Ni, Mn, Cr, Zn, Fe and U in the Kuplu and Guz stream waters were much higher than the world average values. The Dilaver, Gubi, Tepekoy, Maden, Celik and Abaza streams interact with sedimentary rocks, and the Kuplu and Guz streams interact with volcanic rocks. The amount of suspended sediment in the River Buyukmelen in December 2002 was 120 mg l,1. The suspended and bed sediments in the muddy stream waters are formed of quartz, calcite, plagioclase, clay (kaolinite, illite and smectite), muscovite and amphibole minerals. As, Co, Cd, Cr, Pb, Ni, Zn and U have all accumulated in the Buyukmelen river-bed sediments. The muddy feature of the waters is related to the petrographic features of the rocks in the basin and their mineralogical compositions, as most of the sandstones and volcanic rocks (basalt, tuffite and agglomerate) are decomposed to a clay-rich composition at the surface. Thus, the suspended sediment in stream waters increases by physical weathering of the rocks and water,rock interaction. Owing to the growing population and industrialization, water demand is increasing. The plan is to bring water from the River Buyukmelen to Istanbul's drinking-water reservoirs. According to the Water Pollution Regulations, the River Buyukmelen belongs to quality class 1 based on Hg, Cd, Pb, As, Cu, Cr, Zn, Mn, Se, Ba, Na+, Cl,, and SO2,4; and to quality class 3 based on Fe concentration. The concentration of Fe in the River Buyukmelen exceeds the limit values permitted by the World Health Organization and the Turkish Standard. Because water from the River Buyukmelen will be used as drinking water, it will have an adverse effect on water quality and humans if not treated in advance. In addition, the inclusion of Mn and Zn in the Elmali drinking-water reservoir of Istanbul and Fe in the River Buyukmelen water indicates natural inorganic contamination. Mn, Zn and Fe contents in the waters are related to geological origin. Moreover, the River Buyukmelen flow is very muddy in the rainy seasons and it is inevitable that this will pose problems during the purification process. Copyright © 2005 John Wiley & Sons, Ltd. [source] Deformation, mass transfer and mineral reactions in an eclogite facies shear zone in a polymetamorphic metapelite (Monte Rosa nappe, western Alps)JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2004L. M. Keller Abstract This study analyses the mineralogical and chemical transformations associated with an Alpine shear zone in polymetamorphic metapelites from the Monte Rosa nappe in the upper Val Loranco (N-Italy). In the shear zone, the pre-Alpine assemblage plagioclase + biotite + kyanite is replaced by the assemblage garnet + phengite + paragonite at eclogite facies conditions of about 650 °C at 12.5 kbar. Outside the shear zone, only minute progress of the same metamorphic reaction was attained during the Alpine metamorphic overprint and the pre-Alpine mineral assemblage is largely preserved. Textures of incomplete reaction, such as garnet rims at former grain contacts between pre-existing plagioclase and biotite, are preserved in the country rocks of the shear zone. Reaction textures and phase relations indicate that the Alpine metamorphic overprint occurred under largely anhydrous conditions in low strain domains. In contrast, the mineralogical changes and phase equilibrium diagrams indicate water saturation within the Alpine shear zones. Shear zone formation occurred at approximately constant volume but was associated with substantial gains in silica and losses in aluminium and potassium. Changes in mineral modes associated with chemical alteration and progressive deformation indicate that plagioclase, biotite and kyanite were not only consumed in the course of the garnet-and phengite-producing reactions, but were also dissolved ,congruently' during shear zone formation. A large fraction of the silica liberated by plagioclase, biotite and kyanite dissolution was immediately re-precipitated to form quartz, but the dissolved aluminium- and potassium-bearing species appear to have been stable in solution and were removed via the pore fluid. The reaction causes the localization of deformation by producing fine-grained white mica, which forms a mechanically weak aggregate. [source] Microstructural tectonometamorphic processes and the development of gneissic layering: a mechanism for metamorphic segregationJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2000Williams The Mary granite, in the East Athabasca mylonite triangle, northern Saskatchewan, provides an example and a model for the development of non-migmatitic gneissic texture. Gneissic compositional layering developed through the simultaneous evolution of three microdomains corresponding to original plagioclase, orthopyroxene and matrix in the igneous rocks. Plagioclase phenocrysts were progressively deformed and recrystallized, first into core and mantle structures, and ultimately into plagioclase-rich layers or ribbons. Garnet preferentially developed in the outer portions of recrystallized mantles, and, with further deformation, produced garnet-rich sub-layers within the plagioclase-rich gneissic domains. Orthopyroxene was replaced by clinopyroxene and garnet (and hornblende if sufficient water was present), which were, in turn, drawn into layers with new garnet growth along the boundaries. The igneous matrix evolved through a number of transient fabric stages involving S-C fabrics, S-C-C, fabrics, and ultramylonitic domains. In addition, quartz veins were emplaced and subsequently deformed into quartz-rich gneissic layers. Moderate to highly strained samples display extreme mineralogical (compositional) segregation, yet most domains can be directly related to the original igneous precursors. The Mary granite was emplaced at approximately 900 °C and 1.0 GPa and was metamorphosed at approximately 750 °C and 1.0 GPa. The igneous rocks crystallized in the medium-pressure granulite field (Opx,Pl) but were metamorphosed on cooling into the high-pressure (Grt,Cpx,Pl) granulite field. The compositional segregation resulted from a dynamic, mutually reinforcing interaction between deformation, metamorphic and igneous processes in the deep crust. The production of gneissic texture by processes such as these may be the inevitable result of isobaric cooling of igneous rocks within a tectonically active deep crust. [source] Identification of arid phases during the last 50,cal. ka BP from the Fuentillejo maar-lacustrine record (Campo de Calatrava Volcanic Field, Spain),JOURNAL OF QUATERNARY SCIENCE, Issue 7 2010Juana Vegas Abstract Geochemical (element analysis, molecular analysis of organic compounds), physical, palynological, mineralogical and sedimentary facies analysis were performed to characterise the sedimentary record in Fuentillejo maar-lake in the Central Spanish Volcanic Field of Campo de Calatrava, in order to reconstruct the palaeoenvironmental and palaeoclimatic processes which controlled vegetation patterns and deposition of different sedimentary facies. The upper 20,m of core FUENT-1 show variations in clastic input, water chemistry, vegetation and organic fraction sources in the lake throughout the Late Pleistocene and Holocene. The temporal framework provided by 14C accelerator mass spectrometry dating allows assigning the sequence to the last 50,cal. ka BP. Arid phases identified in the FUENT-1 sequence are correlated to Heinrich events (HE) and to stadials of the Dansgaard/Oeschger (D/O) cycles. Siliciclastic facies with high magnetic susceptibility values, high Juniperus pollen content, a low Paq index (aquatic macrophysics proxy index), a decrease in the relative percentage of the n -C27 and an increase in the n -C31 alkanes are indicative of arid and colder climatic events related to HE 2, HE 1 and the Younger Dryas (YD). Similar short cold and arid phases during the Holocene were identified at 9.2,8.6, 7.5,7 and 5.5,5,cal. ka BP. In dolomite,mud facies, the pollen data show an increase in the herbs component, mainly , Chenopodiaceae, Artemisia and Ephedra , steppe taxa; a low Paq index, a decrease in the relative percentage of the n -C27 alkane and an increase in the n -C31 alkane are also observed. This facies was probably the result of lower lake levels and more saline,alkaline conditions, which can be interpreted as linked to arid,warm periods. These warm and arid phases were more frequent during Marine Isotope Stage (MIS) 3 and the interstadials of MIS 2. HE 4, HE 2, HE 1 and the YD in core FUENT-1 were immediately followed by increases of warm steppe pollen assemblages that document rapid warming similar to the D/O cycles but do not imply increasing humidity in the area. Fuentillejo hydrology is controlled by changes in the atmospheric and oceanic systems that operated on the North Atlantic region at millennial scale during the last 50,cal. ka BP. Copyright © 2009 John Wiley & Sons, Ltd. [source] Quaternary tephra marker beds and their potential for palaeoenvironmental reconstruction on Chatham Island, east of New Zealand, southwest Pacific Ocean,JOURNAL OF QUATERNARY SCIENCE, Issue 7 2010Katherine A. Holt Abstract Tephras provide one of the most reliable methods of time control and synchronisation within Quaternary sequences. We report on the identification of two widespread rhyolitic tephras , the Kawakawa and Rangitawa tephras , preserved in extensive peat deposits on Chatham Island ,900,km east of New Zealand. The tephras, both products of supereruptions from the Taupo Volcanic Zone, occur as pale, fine-ash dominated layers typically 10,150,mm thick. Mineralogically they are dominated by rhyolitic glass, together with subordinate amounts of quartz, feldspar, hypersthene, hornblende, Fe,Ti oxides and zircon. Phlogopite/biotite was identified additionally in Rangitawa Tephra. Ages for each tephra were obtained via mineralogical and major element glass composition-based correlation with well-dated equivalent deposits on mainland New Zealand, and we also obtained a new zircon fission-track age for Rangitawa Tephra (350,±,50,ka) on Chatham Island. Both tephras were erupted at critical times for palaeoenvironmental reconstructions in the New Zealand region: the Kawakawa at ca. 27 cal. ka, near the beginning of the ,extended' LGM early in marine isotope stage (MIS) 2; and the Rangitawa at ca. 350 ka near the end of MIS 10. The time constraints provided by the tephras demonstrate that Chatham Island peats contain long-distance pollen derived from mainland New Zealand, which provides a reliable proxy for identifying glacial,interglacial climate conditions, in this case during the MIS 11,10 and MIS 2,1 cycles. The two tephras thus provide important chronostratigraphic tie-points that facilitate correlation and synchronisation not only across the Quaternary deposits of the Chatham Islands group but also with climatically significant terrestrial and marine records in the wider New Zealand region. Copyright © 2010 John Wiley & Sons, Ltd. [source] Development of Low-Firing B-Fluxed Stoneware TilesJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 11 2009Alessandro F. Gualtieri In a global period of economic recession, innovation is a key requisite to get over this critical phase and prompt an upturn in the economy. Even the market of traditional ceramics is in a stalemate and producers desperately seek for new ideas which may supersede the long-used stoneware tiles. This paper presents the full characterization of a new potential class of ceramics named low-temperature stoneware tiles, highlighting their advantages and disadvantages. The body formulation and the firing process are both covered by an Italian Patent. This innovative product exhibits technological and esthetical features analogous to those of the traditional stoneware tile bodies but is fired at a maximum temperature of 950°C, about 250°C lower than the firing temperature of stoneware tiles. This is possible thanks to the addition of a B-rich frit to the mixture composed of quartz, feldspars, and clays. The frit acts as a low-temperature flux and promotes the melting of the feldspars. Within the fired body, the residual phases are quartz and feldspars. The newly formed phases can be ,-spodumene if Li is present in the frit or spinel if Mg is present in the natural materials. The best body formulations have been characterized with mineralogical, microscopic, and technological methods. The major weakness of these ceramic bodies is their unresistance to acids. The chemical nature of the sintered matrix, with a high content of alkalies and B, triggers off the tendency of the ceramic body to react in contact with acidic solutions. Another penalty factor is the cost of the B-rich frit used in the formulation of the ceramic mixture which increases the overall cost of the ceramic body. [source] Authenticating the recovery location of meteorites: The case of CastenasoMETEORITICS & PLANETARY SCIENCE, Issue 3 2007Luigi Folco Using the hypothesis that Castenaso was instead a hot-desert meteorite, we conducted a comparative mineralogical and geochemical study of major weathering effects on European and Saharan ordinary chondrites as potential markers of the environment where Castenaso resided during its terrestrial lifetime. Inductively coupled plasma-mass spectrometry (ICP-MS) data reveals that Castenaso is significantly enriched in Sr, Ba, Tl, and U, and suggests geochemical alteration in a hot-desert environment. The alteration is minor: Castenaso is not coated by desert varnish and does not show significant light rare earth element (LREE) enrichment or loss of Ni and Co. The apparent contrast in size, morphology, and composition between the soil particles filling the external fractures of Castenaso and those from the bank of the Idice Stream observed under the scanning electron microscope (SEM) suggests that Castenaso did not reside at the reported find location. Abraded quartz grains (up to 1 mm in size) in Castenaso are undoubtedly from a hot-desert eolian environment: they are well-rounded and show external surfaces characterized by the presence of dish-shaped concavities and upturned silica plates that have been subject to solution-precipitation and subsequent smoothing. We therefore conclude that Castenaso is one of the many hot-desert ordinary chondrite finds, probably from the Sahara, that is currently available on the market. This forensic work provides the scientific grounds for changing the name of this meteorite. [source] A petrological, mineralogical, and chemical analysis of the lunar mare basalt meteorite LaPaz Icefield 02205, 02224, and 02226METEORITICS & PLANETARY SCIENCE, Issue 7 2006Katherine H. Joy They consist mainly of zoned pyroxene and plagioclase grains, with minor ilmenite, spinel, and mesostasis regions. Large, possibly xenocrystic, forsteritic olivine grains (<3% by mode) contain small trapped multiphase melt inclusions. Accessory mineral and mesostasis composition shows that the samples have experienced residual melt crystallization with silica oversaturation and late-stage liquid immiscibility. Our section of LAP 02224 has a vesicular fusion crust, implying that it was at one time located sufficiently close to the lunar surface environment to have accumulated solar-wind-implanted gases. The stones have a comparable major element composition and petrography to low-Ti, low-Al basalts collected at the Apollos 12 and 15 landing sites. However, the LAP stones also have an enriched REE bulk composition and are more ferroan (Mg numbers in the range of 31 to 35) than similar Apollo samples, suggesting that they represent members of a previously unsampled fractionated mare basalt suite that crystallized from a relatively evolved lunar melt. [source] Ibitira: A basaltic achondrite from a distinct parent asteroid and implications for the Dawn missionMETEORITICS & PLANETARY SCIENCE, Issue 5 2005David W. MITTLEFEHLDT The mean Fe/Mn ratio of pyroxenes in Ibitira with <10 mole% wollastonite component is 36.4 ± 0.4; this value is well resolved from those of similar pyroxenes in five basaltic eucrites studied for comparison, which range from 31.2 to 32.2. Data for the latter five eucrites completely overlap. Ibitira pyroxenes have lower Fe/Mg than the basaltic eucrite pyroxenes; thus, the higher Fe/Mn ratio does not reflect a simple difference in oxidation state. Ibitira also has an oxygen isotopic composition, alkali element contents, and a Ti/Hf ratio that distinguish it from basaltic eucrites. These differences support derivation from a distinct parent asteroid. Thus, Ibitira is the first recognized representative of the fifth known asteroidal basaltic crust, the others being the HED, mesosiderite, angrite, and NWA 011 parent asteroids. 4 Vesta is generally assumed to be the HED parent asteroid. The Dawn mission will orbit 4 Vesta and will perform detailed mapping and mineralogical, compositional, and geophysical studies of the asteroid. Ibitira is only subtly different from eucritic basalts. A challenge for the Dawn mission will be to distinguish different basalt types on the surface and to attempt to determine whether 4 Vesta is indeed the HED parent asteroid. [source] Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modelingMETEORITICS & PLANETARY SCIENCE, Issue 7 2004Dieter Stöffler We present and interpret results of petrographic, mineralogical, and chemical analyses of the 1511 m deep ICDP Yaxcopoil-1 (Yax-1) drill core, with special emphasis on the impactite units. Using numerical model calculations of the formation, excavation, and dynamic modification of the Chicxulub crater, constrained by laboratory data, a model of the origin and emplacement of the impact formations of Yax-1 and of the impact structure as a whole is derived. The lower part of Yax-1 is formed by displaced Cretaceous target rocks (610 m thick), while the upper part comprises six suevite-type allochthonous breccia units (100 m thick). From the texture and composition of these lithological units and from numerical model calculations, we were able to link the seven distinct impact-induced units of Yax-1 to the corresponding successive phases of the crater formation and modification, which are as follows: 1) transient cavity formation including displacement and deposition of Cretaceous "megablocks;" 2) ground surging and mixing of impact melt and lithic clasts at the base of the ejecta curtain and deposition of the lower suevite right after the formation of the transient cavity; 3) deposition of a thin veneer of melt on top of the lower suevite and lateral transport and brecciation of this melt toward the end of the collapse of the transient cavity (brecciated impact melt rock); 4) collapse of the ejecta plume and deposition of fall-back material from the lower part of the ejecta plume to form the middle suevite near the end of the dynamic crater modification; 5) continued collapse of the ejecta plume and deposition of the upper suevite; 6) late phase of the collapse and deposition of the lower sorted suevite after interaction with the inward flowing atmosphere; 7) final phase of fall-back from the highest part of the ejecta plume and settling of melt and solid particles through the reestablished atmosphere to form the upper sorted suevite; and 8) return of the ocean into the crater after some time and minor reworking of the uppermost suevite under aquatic conditions. Our results are compatible with: a) 180 km and 100 km for the diameters of the final crater and the transient cavity of Chicxulub, respectively, as previously proposed by several authors, and b) the interpretation of Chicxulub as a peak-ring impact basin that is at the transition to a multi-ring basin. [source] Geology and geochemistry of shallow drill cores from the Bosumtwi impact structure, GhanaMETEORITICS & PLANETARY SCIENCE, Issue 8 2003Daniel Boamah The interior of the structure is largely filled by the 8 km diameter Lake Bosumtwi, and the crater rim and region in the environs of the crater is covered by tropical rainforest, making geological studies rather difficult and restricted to road cuts and streams. In early 1999, we undertook a shallow drilling program to the north of the crater rim to determine the extent of the ejecta blanket around the crater and to obtain subsurface core samples for mineralogical, petrological, and geochemical studies of ejecta of the Bosumtwi impact structure. A variety of impactite lithologies are present, consisting of impact glassrich suevite and several types of breccia: lithic breccia of single rock type, often grading into unbrecciated rock, with the rocks being shattered more or less in situ without much relative displacement (autochthonous?), and lithic polymict breccia that apparently do not contain any glassy material (allochtonous?). The suevite cores show that melt inclusions are present throughout the whole length of the cores in the form of vesicular glasses with no significant change of abundance with depth. Twenty samples from the 7 drill cores and 4 samples from recent road cuts in the structure were studied for their geochemical characteristics to accumulate a database for impact lithologies and their erosion products present at the Bosumtwi crater. Major and trace element analyses yielded compositions similar to those of the target rocks in the area (graywacke-phyllite, shale, and granite). Graywacke-phyllite and granite dikes seem to be important contributors to the compositions of the suevite and the road cut samples (fragmentary matrix), with a minor contribution of Pepiakese granite. The results also provide information about the thickness of the fallout suevite in the northern part of the Bosumtwi structure, which was determined to be ,15 m and to occupy an area of ,1.5 km2. Present suevite distribution is likely to be caused by differential erosion and does not reflect the initial areal extent of the continuous Bosumtwi ejecta deposits. Our studies allow a comparison with the extent of the suevite at the Ries, another well-preserved impact structure. [source] Petrochemistry of Volcanic Rocks in the Hishikari Mining Area of Southern Japan, with Implications for the Relative Contribution of Lower Crust and Mantle-derived BasaltRESOURCE GEOLOGY, Issue 4 2003Takahiro Hosono Abstract. This study presents the petrographical, mineralogical, and geochemical characteristics of Late Pliocene-Pleistocene volcanic rocks distributed in the Hishikari gold mining area of southern Kyushu, Japan, and discusses their origin and evolution. The Hishikari volcanic rocks (HVR), on the basis of age and chemical compositions, are divided into the Kurosonsan (2.4,1.0 Ma) and Shishimano (1.7,0.5 Ma) Groups, which occur in the northern and southern part of the area, respectively. Each group is composed of three andesites and one rhyodacite. HVR are characterized by high concentrations of incompatible elements compared with other volcanic rocks in southern Kyushu, and have low Sr/Nd and high Th/U, Th/Pb, and U/Pb ratios compared with typical subduction-related arc volcanic rocks. Modal and whole-rock compositions of the HVR change systematically with the age of the rocks. Mafic mineral and augite/hypersthene ratios of the andesites decrease with decreasing age in the Kurosonsan Group, whereas in the Shishimano Group, these ratios are higher in the youngest andesite. Similarly, major and trace element compositions of the younger andesites in the former group are enriched in felsic components, whereas in the latter group the youngest andesite is more mafic than older andesites. Moreover, the crystallization temperature of phenocryst minerals decreases with younger age in the former group, whereas the opposite trend is seen in the latter group. Another significant feature is that rhyodacite in the Shishimano Group is enriched in felsic minerals and incompatible elements, and exhibits higher crystallization temperatures of phenocryst minerals than the rhyodacite of the Kurosonsan Group. Geochemical attributes of the HVR and other volcanic rocks in southern Kyushu indicate that a lower subcontinental crust, characterized by so-called EMI-type Sr-Nd and DUPAL anomaly-like Pb isotopic compositions, is distributed beneath the upper to middle crust of the Shimanto Supergroup. The HVR would be more enriched in felsic materials derived from the lower crust by high-alumina basaltic magma from the mantle than volcanic rocks in other areas of southern Kyushu. The Kurosonsan Group advanced the degree of the lower crust contribution with decreasing age from 51 %, through 61 and 66 % to 77 %. In the Shishimano Group, the younger rhyodacite and andesite are derived from hotter magmas with smaller amounts of lower crust component (58 and 57 %) than the older two andesites (65 % and 68 %). We suggest that the Shishimano rhyodacite, which is considered to be responsible for gold mineralization, was formed by large degree of fractional crystallization of hot basaltic andesite magma with less lower crustal component. [source] EFFECTS OF MILLING: A POSSIBLE FACTOR INFLUENCING THE DURABILITY OF HISTORICAL MORTARSARCHAEOMETRY, Issue 4 2010D. MIRIELLO In their literary texts, some classical Roman authors such as Gaius Plinius Secundus and Marcus Vitruvius Pollio stress the importance of milling when preparing mortars. Following these indications, this work describes the effects of milling between lime (calcium hydroxide) and clay brick powder before and after the addition of water. Starting and resulting materials were investigated by XRPD, SEM/EDS, differential scanning calorimetry and thermogravimetry (DSC/TC), colorimetry, densimetry and porosimetry. Prolonged milling changes the mineralogy of the starting materials and increases their reactivity. The final lime pastes, starting from materials milled for varying periods of time, had different mineralogical and physical characteristics. These results may help to clarify the reasons for the marked differences in durability of some historical mortars. [source] |