Home About us Contact | |||
Mineral Soil Horizons (mineral + soil_horizon)
Selected AbstractsSpatial variability of O layer thickness and humus forms under different pine beech,forest transformation stages in NE GermanyJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2006Oliver Bens Abstract Spatial variability of humus layer (O layer) thicknesses can have important impacts upon soil water dynamics, nutrient storage and availability, as well as plant growth. The purpose of the present study was to elucidate the impact of forest-transformation practices on the spatial variability of O layer thicknesses. The study focused on the Kahlenberg forest area (NE Germany) with stands of Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica) of different age structures that form a transformation chronosequence from pure Scots pine stands towards pure European beech stands. Topsoil profiles including both, the O layer and the uppermost humic mineral soil horizon were excavated at intervals of 0.4 m along 15,20 m long transects, and spatial variability of O layer thicknesses was quantified by variogram analysis. The correlation lengths of total O layer thickness increased in the sequence consisting of pure pine stand (3.1 m) , older mixed stand (3.7 m) , pure beech stand (4.5 m), with the exception of the younger mixed stand, for which no correlation lengths of total O layer thickness could be determined. The degree of spatial correlation, i.e., the percentage of the total variance which can be described by variograms, was highest for the two monospecies stands, whereas this percentage was distinctly lower for the two mixed stands. A similar minimum for the two mixed stands was observed for the correlation lengths of the Oh horizon. These results suggest that the spatial structures of forest-transformation stands may be interpreted in terms of a disturbance (in the form of the underplanting of beech trees). After this disturbance, the forest ecosystem requires at least 100 y to again reach relative equilibrium. These findings are in line with the results of other soil-related investigations at these sites. Räumliche Variabilität der Humuslagenmächtigkeit und Humusformen in verschiedenen Stadien des Waldumbaus von Kiefer zu Buche in NO-Deutschland Die räumliche Variabilität der Humusauflagenmächtigkeit kann einen bedeutenden Einfluss auf die Bodenwasserdynamik, Nährstoffspeicherung und -verfügbarkeit sowie das Pflanzenwachstum haben. Ziel dieser Studie war es, die Auswirkungen von Waldumbaumaßnahmen auf die räumliche Verteilung der Auflagehumusmächtigkeiten zu untersuchen. Im Forstrevier Kahlenberg, mit Beständen von Kiefer (Pinus sylvestris) und Buche (Fagus sylvatica) unterschiedlichen Alters, welche eine Transformations-Chronosequenz von einem Kiefern-Reinbestand hin zu einem reinen Buchenbestand darstellen, wurden Humusprofile entlang von 15,20 m langen Transekten in Abständen von 0,4 m aufgenommen. Die räumliche Variabilität der Mächtigkeiten der Auflagehumushorizonte wurde durch Variogramm-Analysen quantifiziert. Die Korrelationslängen der Mächtigkeiten des gesamten Auflagehumus stiegen in der Reihenfolge reiner Kiefernbestand (3,1 m) , älterer Mischbestand (3,7 m) , reiner Buchenbestand (4,5 m) an. Aus dieser Reihe fällt der jüngere Mischbestand heraus; für ihn konnten keine Korrelationslängen ermittelt werden. Der Grad der räumlichen Korrelation, d. h. der Anteil der gesamten Varianz, der durch Variogramme beschrieben wird, ist für die beiden Reinbestände am höchsten, während er für die beiden Mischbestände deutlich geringer ist. Ein ähnliches Minimum für die beiden Mischbestände ergibt sich, wenn nur die Korrelationslängen der Oh-Mächtigkeiten betrachtet werden. Diese Ergebnisse deuten darauf hin, dass die räumlichen Strukturen von Waldumbaubeständen im Sinne einer Störung gedeutet werden können (wobei die Umbaumaßnahme und der Unterbau mit Buchen die Störung darstellt). Diese Störung dauert offenbar mindestens 100 a an. Dieser Befund stimmt mit den Ergebnissen aus Studien zu weiteren relevanten Bodeneigenschaften an Forststandorten im nordostdeutschen Tiefland überein. [source] Organic matter quality of a forest soil subjected to repeated drying and different re-wetting intensitiesEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2010A. Schmitt Extended drought periods followed by heavy rainfall may increase in many regions of the Earth, but the consequences for the quality of soil organic matter and soil microbial communities are poorly understood. Here, we investigated the effect of repeated drying and re-wetting on microbial communities and the quality of particulate and dissolved organic matter in a Haplic Podzol from a Norway spruce stand. After air-drying, undisturbed soil columns were re-wetted at different intensities (8, 20 and 50 mm per day) and time intervals, so that all treatments received the same amount of water per cycle (100 mm). After the third cycle, SOM pools of the treatments were compared with those of non-dried control columns. Lignin phenols were not systematically affected in the O horizons by the treatments whereas fewer lignin phenols were found in the A horizon of the 20- and 50-mm treatments. Microbial biomass and the ratio of fungi to bacteria were generally not altered, suggesting that most soil microorganisms were well adapted to drying and re-wetting in this soil. However, gram-positive bacteria and actinomycetes were reduced whereas gram-negative bacteria and protozoa were stimulated by the treatments. The increase in the (cy 17: 0 + cy 19: 0)/(16:1,7c + 18:1,7c) ratio indicates physiological or nutritional stress for the bacterial communities in the O, A and B horizons with increasing re-wetting intensity. Drying and re-wetting reduced the amount of hydrolysable plant and microbial sugars in all soil horizons. However, CO2 and dissolved organic carbon fluxes could not explain these losses. We postulate that drying and re-wetting triggered chemical alterations of hydrolysable sugar molecules in organic and mineral soil horizons. [source] Ammonium fluoride extraction for determining inorganic sulphur in acid forest soilsEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2000J. Prietzel Summary Current methods for determining inorganic sulphur (S) in aerated mineral soil horizons often result in underestimates. To overcome this defect we developed a new method combining a batch extraction with 0.5 m NH4F solution at a soil:solution ratio of 1:5 with a subsequent analysis of the mobilized SO42, by ion chromatography. The ammonium fluoride extraction enables us to characterize inorganic sulphate in non-calcareous forest soils. It is more efficient than conventional procedures in which inorganic S is extracted with phosphate or bicarbonate solution. In contrast to the extraction with strongly alkaline reagents (NaOH, KOH, LiOH), the NH4+,NH3 buffer system in NH4F prevents the pH of the suspension from exceeding 9.0 and thus the undesired conversion of organic S into SO42, by auto-oxidation and hydrolysis of ester sulphate. In a comparison we demonstrated that the inorganic S in six German forest soils is underestimated by up to 50% or 200 kg S ha,1 in the uppermost 60 cm, if it is assessed by extraction with 0.016 m KH2PO4 or 0.5 m NaHCO3 instead of 0.5 m NH4F. Conversely, the pool of ester sulphate is overestimated almost threefold. [source] Extraction of mobile element fractions in forest soils using ammonium nitrate and ammonium chlorideJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2008Alexander Schöning Abstract The extraction of earth alkaline and alkali metals (Ca, Mg, K, Na), heavy metals (Mn, Fe, Cu, Zn, Cd, Pb) and Al by 1 M NH4NO3 and 0.5 M NH4Cl was compared for soil samples (texture: silt loam, clay loam) with a wide range of pH(CaCl2) and organic carbon (OC) from a forest area in W Germany. For each of these elements, close and highly significant correlations could be observed between the results from both methods in organic and mineral soil horizons. The contents of the base cations were almost convertible one-to-one. However, for all heavy metals NH4Cl extracted clearly larger amounts, which was mainly due to their tendency to form soluble chloro complexes with chloride ions from the NH4Cl solution. This tendency is very distinct in the case of Cd, Pb, and Fe, but also influences the results of Mn and Zn. In the case of Cd and Mn, and to a lower degree also in the case of Pb, Fe, and Zn, the effect of the chloro complexes shows a significant pH dependency. Especially for Cd, but also for Pb, Fe, Mn, Zn, the agreement between both methods increased, when pH(CaCl2) values and/or contents of OC were taken into account. In comparison to NH4Cl, NH4NO3 proved to be chemically less reactive and, thus, more suitable for the extraction of comparable fractions of mobile heavy metals. Since both methods lead to similar and closely correlated results with regard to base cations and Al, the use of NH4NO3 is also recommended for the extraction of mobile/exchangeable alkali, earth alkaline, and Al ions in soils and for the estimation of their contribution to the effective cation-exchange capacity (CEC). Consequently, we suggest to determine the mobile/exchangeable fraction of all elements using the NH4NO3 method. However, the applicability of the NH4NO3 method to other soils still needs to be investigated. [source] Extraction of water-soluble organic matter from mineral horizons of forest soilsJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2007Thilo Rennert Abstract Dissolved organic matter (DOM) is involved in many important biogeochemical processes in soil. As its collection is laborious, very often water-soluble organic matter (WSOM) obtained by extracting organic or mineral soil horizons with a dilute salt solution has been used as a substitute of DOM. We extracted WSOM (measured as water-soluble organic C, WSOC) from seven mineral horizons of three forest soils from North-Rhine Westphalia, Germany, with demineralized H2O, 0.01 M CaCl2, and 0.5 M K2SO4. We investigated the quantitative and qualitative effects of the extractants on WSOM and compared it with DOM collected with ceramic suction cups from the same horizons. The amounts of WSOC extracted differed significantly between both the extractants and the horizons. With two exceptions, K2SO4 extracted the largest amounts of WSOC (up to 126 mg C,kg,1) followed by H2O followed by CaCl2. The H2O extracts revealed by far the highest molar UV absorptivities at 254 nm (up to 5834 L mol,1,cm,1) compared to the salt solutions which is attributed to solubilization of highly aromatic compounds. The amounts of WSOC extracted did not depend on the amounts of Fe and Al oxides as well as on soil organic C and pH. Water-soluble organic matter extracted by K2SO4 bore the largest similarity to DOM due to relatively analogue molar absorptivities. Therefore, we recommend to use this extractant when trying to obtain a substitute for DOM, but as WSOM extraction is a rate-limited process, the suitability of extraction procedures to obtain a surrogate of DOM remains ambiguous. [source] Soil organic carbon pools in a periglacial landscape: a case study from the central Canadian ArcticPERMAFROST AND PERIGLACIAL PROCESSES, Issue 1 2010Gustaf Hugelius Abstract We investigated total storage and landscape partitioning of soil organic carbon (SOC) in continuous permafrost terrain, central Canadian Arctic. The study is based on soil chemical analyses of pedons sampled to 1-m depth at 35 individual sites along three transects. Radiocarbon dating of cryoturbated soil pockets, basal peat and fossil wood shows that cryoturbation processes have been occurring since the Middle Holocene and that peat deposits started to accumulate in a forest-tundra environment where spruce was present (,6000 cal yrs BP). Detailed partitioning of SOC into surface organic horizons, cryoturbated soil pockets and non-cryoturbated mineral soil horizons is calculated (with storage in active layer and permafrost calculated separately) and explored using principal component analysis. The detailed partitioning and mean storage of SOC in the landscape are estimated from transect vegetation inventories and a land cover classification based on a Landsat satellite image. Mean SOC storage in the 0,100-cm depth interval is 33.8,kg C,m,2, of which 11.8,kg C m,2 is in permafrost. Fifty-six per cent of the total SOC mass is stored in peatlands (mainly bogs), but cryoturbated soil pockets in Turbic Cryosols also contribute significantly (17%). Elemental C/N ratios indicate that this cryoturbated soil organic matter (SOM) decomposes more slowly than SOM in surface O-horizons. Copyright © 2010 John Wiley & Sons, Ltd. [source] |