Mineral Reactions (mineral + reaction)

Distribution by Scientific Domains


Selected Abstracts


A mathematical model for steady-state regolith production at constant erosion rate

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2010
M.I. Lebedeva
Abstract It has been hypothesized that many soil profiles reach a steady-state thickness. In this work, such profiles were simulated using a one-dimensional model of reaction with advective and diffusive solute transport. A model ,rock' is considered, consisting of albite that weathers to kaolinite in the presence of chemically inert quartz. The model yields three different steady-state regimes of weathering. At the lowest erosion rates, a local-equilibrium regime is established where albite is completely depleted in the weathering zone. This regime is equivalent to the transport-limited regime described in the literature. With an increase in erosion rate, transition and kinetic regimes are established. In the transition regime, both albite and kaolinite are present in the weathering zone, but albite does not persist to the soil,air interface. In the weathering-limited regime, here called the kinetic regime, albite persists to the soil,air interface. The steady-state thickness of regolith decreases with increasing erosion rate in the local equilibrium and transition regimes, but in the kinetic regime, this thickness is independent of erosion rate. Analytical expressions derived from the model are used to show that regolith production rates decrease exponentially with regolith thickness. The steady-state regolith thickness increases with the Darcy velocity of the pore fluid, and in the local equilibrium regime may vary markedly with small variations in this velocity and erosion rate. In the weathering-limited regime, the temperature dependences for chemical weathering rates are related to the activation energy for the rate constant for mineral reaction and to the ,H of dissolution, while for local equilibrium regimes they are related to the ,H only. The model illustrates how geochemical and geomorphological observations are related for a simple compositional system. The insights provided will be useful in interpreting natural regolith profiles. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Amphibolite and blueschist,greenschist facies metamorphism, Blue Mountain inlier, eastern Jamaica

GEOLOGICAL JOURNAL, Issue 5 2008
Richard N. Abbott Jr
Abstract Cretaceous (possibly older) metamorphic rock occurs mainly in the Blue Mountain inlier in eastern Jamaica. Fault-bounded blocks reveal two styles of metamorphism, Westphalia Schist (upper amphibolite facies) and Mt. Hibernia Schist (blueschist (BS),greenschist (GS) facies). Both Westphalia Schist and Mt. Hibernia Schist preserve detailed records of retrograde P,T paths. The paths are independent, but consistent with different parts of the type-Sanbagawa metamorphic facies series in Japan. For each path, phase relationships and estimated P,T conditions support a two-stage P,T history involving residence at depth, followed by rapid uplift and cooling. Conditions of residence vary depending on the level in a tectonic block. For the critical mineral reaction (isograd) in Westphalia Schist, conditions were P ,7.5,kbars, T ,600°C (upper amphibolite facies). Retrograde conditions in Hibernia Schist were P,=,2.6,3.0,kbars, T,=,219,237°C for a(H2O),=,0.8,1.0 (GS facies). Mt. Hibernia Schist may represent a volume of rock that was separated and uplifted at an early time from an otherwise protracted P,T path of the sort that produced the Westphalia Schist. Reset K,Ar ages for hornblende and biotite indicate only that retrograde metamorphism of Westphalia Schist took place prior to 76.5,Ma (pre-Campanian). Uplift may have commenced with an Albian,Aptian (,112,Ma) orogenic event. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Reaction-induced nucleation and growth v. grain coarsening in contact metamorphic, impure carbonates

JOURNAL OF METAMORPHIC GEOLOGY, Issue 8 2010
A. BERGER
Abstract The understanding of the evolution of microstructures in a metamorphic rock requires insights into the nucleation and growth history of individual grains, as well as the coarsening processes of the entire aggregate. These two processes are compared in impure carbonates from the contact metamorphic aureole of the Adamello pluton (N-Italy). As a function of increasing distance from the pluton contact, the investigated samples have peak metamorphic temperatures ranging from the stability field of diopside/tremolite down to diagenetic conditions. All samples consist of calcite as the dominant matrix phase, but additionally contain variable amounts of other minerals, the so-called second phases. These second phases are mostly silicate minerals and can be described in a KCMASHC system (K2O, CaO, MgO, Al2O3, SiO2, H2O, CO2), but with variable K/Mg ratios. The modelled and observed metamorphic evolution of these samples are combined with the quantification of the microstructures, i.e. mean grain sizes and crystal size distributions. Growth of the matrix phase and second phases strongly depends on each other owing to coupled grain coarsening. The matrix phase is controlled by the interparticle distances between the second phases, while the second phases need the matrix grain boundary network for mass transfer processes during both grain coarsening and mineral reactions. Interestingly, similar final mean grain sizes of primary second phase and second phases newly formed by nucleation are observed, although the latter formed later but at higher temperatures. Moreover, different kinetic processes, attributed to different driving forces for growth of the newly nucleated grains in comparison with coarsening processes of the pre-existing phases, must have been involved. Chemically induced driving forces of grain growth during reactions are orders of magnitudes larger compared to surface energy, allowing new reaction products subjected to fast growth rates to attain similar grain sizes as phases which underwent long-term grain coarsening. In contrast, observed variations in grain size of the same mineral in samples with a similar T,t history indicate that transport properties depend not only on the growth and coarsening kinetics of the second phases but also on the microstructure of the dominant matrix phase during coupled grain coarsening. Resulting microstructural phenomena such as overgrowth and therefore preservation of former stable minerals by the matrix phase may provide new constraints on the temporal variation of microstructures and provide a unique source for the interpretation of the evolution of metamorphic microstructures. [source]


Oxide and sulphide isograds along a Late Archean, deep-crustal profile in Tamil Nadu, south India

JOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2005
D. E. HARLOV
Abstract Oxide,sulphide,Fe,Mg,silicate and titanite,ilmenite textures as well as their mineral compositions have been studied in felsic and intermediate orthogneisses across an amphibolite (north) to granulite facies (south) traverse of lower Archean crust, Tamil Nadu, south India. Titanite is limited to the amphibolite facies terrane where it rims ilmenite or occurs as independent grains. Pyrite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade. Pyrrhotite is confined to the high-grade granulites. Ilmenite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade and occurring primarily as hemo-ilmenite in the high-grade granulite facies rocks. Magnetite is widespread throughout the traverse and is commonly associated with ilmenite. It decreases in abundance with increasing metamorphic grade. In the granulite facies zone, reaction rims of magnetite + quartz occur along Fe,Mg silicate grain boundaries. Magnetite also commonly rims or is associated with pyrite. Both types of reaction rims represent an oxidation effect resulting from the partial subsolidus reduction of the hematite component in ilmenite to magnetite. This is confirmed by the presence of composite three oxide grains consisting of hematite, magnetite and ilmenite. Magnetite and magnetite,pyrite micro-veins along silicate grain boundaries formed over a wide range of post-peak metamorphic temperatures and pressures ranging from high-grade SO2 to low-grade H2S-dominated conditions. Oxygen fugacities estimated from the orthopyroxene,magnetite,quartz, orthopyroxene,hematite,quartz, and magnetite,hematite buffers average 2.5 log units above QFM. It is proposed that the trends in mineral assemblages, textures and composition are the result of an external, infiltrating concentrated brine containing an oxidizing component such as CaSO4 during high-grade metamorphism later acted upon by prograde and retrograde mineral reactions that do not involve an externally derived fluid phase. [source]


Deformation, mass transfer and mineral reactions in an eclogite facies shear zone in a polymetamorphic metapelite (Monte Rosa nappe, western Alps)

JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2004
L. M. Keller
Abstract This study analyses the mineralogical and chemical transformations associated with an Alpine shear zone in polymetamorphic metapelites from the Monte Rosa nappe in the upper Val Loranco (N-Italy). In the shear zone, the pre-Alpine assemblage plagioclase + biotite + kyanite is replaced by the assemblage garnet + phengite + paragonite at eclogite facies conditions of about 650 °C at 12.5 kbar. Outside the shear zone, only minute progress of the same metamorphic reaction was attained during the Alpine metamorphic overprint and the pre-Alpine mineral assemblage is largely preserved. Textures of incomplete reaction, such as garnet rims at former grain contacts between pre-existing plagioclase and biotite, are preserved in the country rocks of the shear zone. Reaction textures and phase relations indicate that the Alpine metamorphic overprint occurred under largely anhydrous conditions in low strain domains. In contrast, the mineralogical changes and phase equilibrium diagrams indicate water saturation within the Alpine shear zones. Shear zone formation occurred at approximately constant volume but was associated with substantial gains in silica and losses in aluminium and potassium. Changes in mineral modes associated with chemical alteration and progressive deformation indicate that plagioclase, biotite and kyanite were not only consumed in the course of the garnet-and phengite-producing reactions, but were also dissolved ,congruently' during shear zone formation. A large fraction of the silica liberated by plagioclase, biotite and kyanite dissolution was immediately re-precipitated to form quartz, but the dissolved aluminium- and potassium-bearing species appear to have been stable in solution and were removed via the pore fluid. The reaction causes the localization of deformation by producing fine-grained white mica, which forms a mechanically weak aggregate. [source]


Melt-producing and melt-consuming reactions in the Achankovil cordierite gneisses, South India

JOURNAL OF METAMORPHIC GEOLOGY, Issue 6 2002
B. Cenki
Abstract Migmatitic cordierite gneisses within the Achankovil Zone (AZ) of southern Pan-African India record melt-producing and subsequent melt-consuming mineral reactions. Early mineral assemblages Bt-Sil-Qtz and Bt-Sil-Spl, deduced from inclusion textures in garnet prophyroblasts, break down via successive dehydration melting reactions to high- T phase assemblages (e.g. Grt-Crd-Liq, Opx-Liq, Spl-Crd-Liq). Later back reactions between the restite and the in situ crystallizing melt resulted in thin cordierite coronas separating garnet from the leucosome, and partial resorption of garnet to Opx-Crd or Crd-Bt-Qtz symplectites. Leucosomes generally display a moderate (low-strain gneisses) to strong (high-strain gneisses) depletion of alkali feldspar attributed to mineral-melt back reactions partly controlled by the degree of melt segregation. Using a KFMASH partial petrogenetic grid that includes a melt phase, and qualitative pseudosections for microdomains of high and low Al/Si ratios, the successive phase assemblages and reaction textures are interpreted in terms of a clockwise P,T path culminating at about 6,7 kbar and 900,950 °C. This P,T path is consistent with, but more detailed than published results, which suggests that taking a melt phase into account is not only a valid, but also a useful approach. Comparing P,T data and lithological and isotopic data for the AZ with adjacent East Gondwana fragments, suggests the presence of a coherent metasedimentary unit exposed from southern Madagascar via South India (AZ) and Sri Lanka (Wanni Complex) to the Lützow,Holm Bay in Eastern Antarctica. [source]