Mineral Associations (mineral + association)

Distribution by Scientific Domains


Selected Abstracts


Geochemistry, Petrography and Spectroscopy of Organic Matter of Clay-Associated Kerogen of Ypresian Series: Gafsa-Metlaoui Phosphatic Basin, Tunisia

RESOURCE GEOLOGY, Issue 4 2008
Mongi Felhi
Abstract This work presents geochemical characterization of isolated kerogen out of clay fraction using petrography studies, infrared absorption and solid state 13C nuclear magnetic resonance (NMR) spectroscopy, with N -alkane distributions of saturated hydrocarbon. Mineralogical study of clay mineral associations was carried out using X-ray diffraction (XRD), on Ypresian phosphatic series from Gafsa-Metlaoui basin, Tunisia. The XRD data indicate that smectite, palygorskite and sepiolite are the prevalent clay minerals in the selected samples. In this clay mineral association, the N -alkane (m/z = 57) distribution indicates that the marine organic matter is plankton and bacterial in origin. The kerogens observed on transmitted light microscopy, however, appear to be totally amorphous organic matter, without any appearance of biological form. The orange gel-like amorphous organic matter with distinct edges and homogenous texture is consistent with a high degree of aliphaticity. This material has relatively intense CH2 and CH3 infrared bands in 13C NMR peaks. This aliphatic character is related to bacterial origin. Brown amorphous organic matter with diffuse edges has a lower aliphatic character than the previous kerogen, deduced from relatively low CH2 and CH3 infrared and 13C NMR band intensities. [source]


Principal features of impact-generated hydrothermal circulation systems: mineralogical and geochemical evidence

GEOFLUIDS (ELECTRONIC), Issue 3 2005
MIKHAIL V. NAUMOVArticle first published online: 14 JUL 200
Abstract Any hypervelocity impact generates a hydrothermal circulation system in resulting craters. Common characteristics of hydrothermal fluids mobilized within impact structures are considered, based on mineralogical and geochemical investigations, to date. There is similarity between the hydrothermal mineral associations in the majority of terrestrial craters; an assemblage of clay minerals,zeolites,calcite,pyrite is predominant. Combining mineralogical, geochemical, fluid inclusion, and stable isotope data, the distinctive characteristics of impact-generated hydrothermal fluids can be distinguished as follows: (i) superficial, meteoric and ground water and, possibly, products of dehydration and degassing of minerals under shock are the sources of hot water solutions; (ii) shocked target rocks are sources of the mineral components of the solutions; (iii) flow of fluids occurs mainly in the liquid state; (iv) high rates of flow are likely (10,4 to 10,3 m s,1); (v) fluids are predominantly aqueous and of low salinity; (vi) fluids are weakly alkaline to near-neutral (pH 6,8) and are supersaturated in silica during the entire hydrothermal process because of the strong predominance of shock-disordered aluminosilicates and fusion glasses in the host rocks; and (vii) variations in the properties of the circulating solutions, as well as the spatial distribution of secondary mineral assemblages are controlled by tempera ure gradients within the circulation cell and by a progressive cooling of the impact crater. Products of impact-generated hydrothermal processes are similar to the hydrothermal mineralization in volcanic areas, as well as in modern geothermal systems, but impacts are always characterized by a retrograde sequence of alteration minerals. [source]


Crystallization environment of Kazakhstan microdiamond: evidence from nanometric inclusions and mineral associations

JOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2003
L. F. Dobrzhinetskaya
Abstract Nanometric solid inclusions in diamond incorporated in garnet and zircon from felsic gneiss of the Kokchetav massif, Kazakhstan, have been examined utilizing electron microscopy and focused ion beam techniques. Host garnet and zircon contain numerous pockets of multiple inclusions, which consist of 1,3 diamond crystals intergrown with quartz, phengite, phlogopite, albite, K-feldspar, rutile, apatite, titanite, biotite, chlorite and graphite in various combinations. Recalculation of the average chemical composition of the entrapped fluid represented by multiple inclusion pockets indicates that such fluid contained a low wt% of SiO2, suggesting a relatively low-temperature fluid rather than a melt. Transmission electron microscopy revealed that the diamond contains abundant nanocrystalline inclusions of oxides, rare carbonates and silicates. Within the 15 diamond crystals studied, abundant inclusions were found of SiO2, TiO2, FexOy, Cr2O3, ZrSiO4, and single grains of ThxOy, BaSO4, MgCO3, FeCr2O4 and a stoichiometric Fe-rich pyroxene. The diversity of trace elements within inclusions of essentially the same stoichiometry suggests that the Kokchetav diamond crystallized from a fluid containing variable amounts of Si, Fe, Ti, Cr, Zr, Ba, Mg and Th and other minor components such as K, Na, P, S, Pb, Zn, Nb, Al, Ca, Cl. Most of the components in crystals included in diamond appear to have their origin in the subducted metasediments, but some of them probably originate from the mantle. It is concluded that Kokchetav diamond most likely crystallized from a COH-rich multicomponent supercritical fluid at a relatively low temperature (hence the apparently low content of rock-forming elements), and that the diversity of major and minor components suggests interactions between subducted metasediments and mantle components. [source]


Geochemistry, Petrography and Spectroscopy of Organic Matter of Clay-Associated Kerogen of Ypresian Series: Gafsa-Metlaoui Phosphatic Basin, Tunisia

RESOURCE GEOLOGY, Issue 4 2008
Mongi Felhi
Abstract This work presents geochemical characterization of isolated kerogen out of clay fraction using petrography studies, infrared absorption and solid state 13C nuclear magnetic resonance (NMR) spectroscopy, with N -alkane distributions of saturated hydrocarbon. Mineralogical study of clay mineral associations was carried out using X-ray diffraction (XRD), on Ypresian phosphatic series from Gafsa-Metlaoui basin, Tunisia. The XRD data indicate that smectite, palygorskite and sepiolite are the prevalent clay minerals in the selected samples. In this clay mineral association, the N -alkane (m/z = 57) distribution indicates that the marine organic matter is plankton and bacterial in origin. The kerogens observed on transmitted light microscopy, however, appear to be totally amorphous organic matter, without any appearance of biological form. The orange gel-like amorphous organic matter with distinct edges and homogenous texture is consistent with a high degree of aliphaticity. This material has relatively intense CH2 and CH3 infrared bands in 13C NMR peaks. This aliphatic character is related to bacterial origin. Brown amorphous organic matter with diffuse edges has a lower aliphatic character than the previous kerogen, deduced from relatively low CH2 and CH3 infrared and 13C NMR band intensities. [source]