Min Application (min + application)

Distribution by Scientific Domains


Selected Abstracts


Hypothermic insult to the periodontium: a model for the study of aseptic tooth resorption

DENTAL TRAUMATOLOGY, Issue 1 2000
C. W. Dreyer
Abstract , The aim of the current investigation was to define an animal model for the study of hard tissue resorption by examining the responses of the periodontal ligament (PDL) to both single and multiple episodes of hypothermic injury to the crowns of rat teeth. A group of 12 male rats weighing 200,250 g were anesthetized, and pellets of dry ice (CO2) were applied once to the crowns of the right first maxillary molars for continuous periods of 10 or 20 min. Animals were sacrificed at 2, 7, 14 and 28 days and tissues were processed for routine histological examination. A second group of eight animals and a third group of 12 animals were subjected to three applications of dry ice over a period of 1 week and sacrificed at 2 and 14 days respectively after the final application. In addition to thermal insult, the periodontium of teeth from a fourth group of six rats was subjected to mechanical trauma. Examination of the sections from the group undergoing a single freezing episode revealed that, by 1 week, shallow resorption lacunae had appeared on the root surface. These became more extensive after 14 days. At the same time hyaline degeneration was evident in the PDL. Within this group, teeth subjected to the longer 20-min application times generally showed more extensive injuries. By 28 days, evidence of repair was observed with reparative cementum beginning to line the resorption lacunae in the root dentin. Sections from animals subjected to multiple episodes of thermal trauma and those subjected to additional mechanical insult showed more extensive external root resorption than those from single-injury animals. It was concluded that low temperature stimuli applied to the crowns of rat molars were capable of eliciting a sterile degenerative response in the PDL which, in turn, resulted in external root resorption. Furthermore, the degree of this tissue injury was commensurate with the duration and number of exposures to the trauma. The results also indicated that progression of the resorptive process required periodic exposure to the injury, in the absence of which repair to the damaged root occurred. [source]


Octenidine in root canal and dentine disinfection ex vivo

INTERNATIONAL ENDODONTIC JOURNAL, Issue 11 2007
L. Tandjung
Abstract Aim, The aim of the present study was to investigate the antimicrobial activity of octenidine on Enterococcus faecalis ATCC 29212 in a dentine block model. Methodology, Fifty-six root segments of extracted human teeth were infected with E. faecalis for 4 weeks. Octenidine-phenoxyethanol gel (1 : 1) was applied for different timing: 1 min, 10 min, 7 days and in a different formula (1 : 3) for 10 min. Three samples were chosen for the group with placebo gel and for the group without infection (negative control). Dentine samples were collected, and the total count of bacteria and colony-forming units were determined. In addition, for controls and the 10 min group with 1 : 1 gel, the proportion of viable bacteria (PVB) was assessed. Results, Octenidine was particularly effective after incubation periods of 10 min and 7 days. The mean PVB decreased significantly from 57.2% to 5.7% after 10 min application. After 7 days, only one of 10 samples showed positive culture. Conclusion, The present study showed the effectiveness of octenidine against E. faecalis in dentine disinfection. Further laboratory and clinical studies are required. [source]


Protoporphyrin IX Fluorescence Kinetics and Localization after Topical Application of ALA Pentyl Ester and ALA on Hairless Mouse Skin with UVB-Induced Early Skin Cancer

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2000
Johanna T. H. M. van den Akker
ABSTRACT In order to improve the efficacy of 5-aminolevulinic acid-based (ALA) photodynamic therapy (PDT), different ALA derivatives are presently being investigated. ALA esters are more lipophilic and therefore may have better skin penetration properties than ALA, possibly resulting in enhanced protoporphyrin IX (PpIX) production. In previous studies it was shown that ALA pentyl ester (ALAPE) does considerably enhance the PpIX production in cells in vitro compared with ALA. We investigated the in vivo PpIX fluorescence kinetics after application of ALA and ALAPE to hairless mice with and without UVB-induced early skin cancer. ALA and ALAPE (20% wt/wt) were applied topically to the mouse skin and after 30 min, the solvent was wiped off and PpIX fluorescence was followed in time with in vivo fluorescence spectroscopy and imaging. At 6 and 12 h after the 30 min application, skin samples of visible lesions and adjacent altered skin (UVB-exposed mouse skin) and normal mouse skin were collected for fluorescence microscopy. From each sample, frozen sections were made and phase contrast images and fluorescence images were recorded. The in vivo fluorescence kinetics showed that ALAPE induced more PpIX in visible lesions and altered skin of the UVB-exposed mouse skin, but not in the normal mouse skin. In the microscopic fluorescence images, higher ALAPE-induced PpIX levels were measured in the stratum corneum, but not in the dysplastic layer of the epidermis. In deeper layers of the skin, PpIX levels were the same after ALA and ALAPE application. In conclusion, ALAPE does induce higher PpIX fluorescence levels in vivo in our early skin cancer model, but these higher PpIX levels are not located in the dysplastic layer of the epidermis. [source]


Molecular control of ethylene production by cyanide in Arabidopsis thaliana

PHYSIOLOGIA PLANTARUM, Issue 2 2000
Jennifer McMahon Smith
Although cyanide has long been recognized as a co-product of ethylene synthesis, little attention has been given to its potential physiological and molecular roles. In the present work, the long-term effects of cyanide on growth and development were observed in Arabidopsis thaliana. Two days after a single 20-min application of cyanide, plants demonstrated visible signs of stress. Long-term detrimental effects on growth and photosynthetic capabilities were noted, including low chlorophyll accumulation and stunted growth. Because of the relationship between cyanide and ethylene production, we chose to evaluate the results of cyanide treatment on genes encoding proteins involved in ethylene synthesis. We have found that only the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene, ACS6, is rapidly activated in response to cyanide treatment, while other ACS genes were unaffected. This same gene has previously been shown to be transcriptionally activated in response to touch and other environmental stimuli. Cyanide was capable of activating ACS6 transcription within 10 min of treatment, and the amount of transcript correlated positively with the cyanide dosage. Due to the toxic nature of cyanide, plant in vivo concentrations are generally maintained lower than 10 ,M, but can increase under certain stresses. In the present work, we observed that physiologically relevant concentrations as low as 1 ,M HCN, considered metabolically ,safe', were capable of initiating ACS6 transcription. ACS6 transcripts were not substantially reduced as a result of multiple cyanide treatments, which is in contrast with the effects of mechanical stimulation on transcription. Our results suggest a relationship between cyanide production during ethylene synthesis and the molecular control of ethylene synthesis. This work corresponds with earlier experiments that have demonstrated that ethylene and cyanide can elicit some similar physiological responses. It is possible that cyanide may play an active role in ethylene regulation under conditions where rapid cyanide accumulation occurs. Since cyanide can rapidly activate ethylene synthesis, it is possible that it is involved in the positive-feedback regulation of ethylene that occurs in some plant tissues. [source]