Appropriate Correction (appropriate + correction)

Distribution by Scientific Domains


Selected Abstracts


Verification of skin-based markers for 3-dimensional kinematic analysis of the equine tarsal joint

EQUINE VETERINARY JOURNAL, Issue 8 2004
S. KHUMSAP
Summary Reasons for performing study: Kinematic studies are usually based on tracking markers attached to the skin. However, complex joints, such as the tarsal joint, function in 3-dimensions (3D), and have therefore necessitated application of the invasive bone pin technique, limiting kinematic studies to the research laboratory. This study investigates the feasibility of using skin-based markers for 3D analysis of tarsal joint motion. Hypothesis: Three-dimensional motions of the tarsal joint can be measured with an acceptable degree of accuracy using skin markers. Methods: Retroreflective markers were attached over the tibial and metatarsal segments. Markers were tracked automatically at trot. Three-dimensional skin correction algorithms were used for correction of skin displacement, and 3D motions derived from the corrected (CSD) and uncorrected (USD) skin displacement were compared with data from a previous study in which those motions were described using bone-fixed markers (BFM) by correlation, root mean square errors (RMS) and shape agreement (SA) of the curves. Results: The RMS of BFM and CSD were smaller than those of BFM and USD for all motions. The correlation coefficients of BFM and CSD were higher than those of BFM and USD. SA was good or fair for all motions except internal/external rotation and medial/lateral translation. Conclusions and potential relevance: With appropriate correction for skin movement relative to skeletal landmarks, skin markers can identify tarsal 3D motions for flexion/extension, abduction/adduction, cranial/caudal translation, and proximal/distal translation, allowing analysis and comparison of information between horses during swing and stance phases. [source]


Improved correction for population stratification in genome-wide association studies by identifying hidden population structures,

GENETIC EPIDEMIOLOGY, Issue 3 2008
Qizhai Li
Abstract Hidden population substructure can cause population stratification and lead to false-positive findings in population-based genome-wide association (GWA) studies. Given a large panel of markers scanned in a GWA study, it becomes increasingly feasible to uncover the hidden population substructure within the study sample based on measured genotypes across the genome. Recognizing that population substructure can be displayed as clustered and/or continuous patterns of genetic variation, we propose a method that aims at the detection and correction of the confounding effect resulting from both patterns of population substructure. The proposed method is an extension of the EIGENSTRAT method (Price et al. [2006] Nat Genet 38:904,909). This approach is computationally feasible and easily applied to large-scale GWA studies. We show through simulation studies that, compared with the EIGENSTRAT method, the new method requires a smaller number of markers and yields a more appropriate correction for population stratification. Genet. Epidemiol. 2007. Published 2007 Wiley-Liss, Inc. [source]


Delayed onset of central pontine myelinolysis despite appropriate correction of hyponatraemia

INTERNAL MEDICINE JOURNAL, Issue 5-6 2002
A. Omari
No abstract is available for this article. [source]


On establishing the accuracy of noise tomography travel-time measurements in a realistic medium

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2009
Victor C. Tsai
SUMMARY It has previously been shown that the Green's function between two receivers can be retrieved by cross-correlating time series of noise recorded at the two receivers. This property has been derived assuming that the energy in normal modes is uncorrelated and perfectly equipartitioned, or that the distribution of noise sources is uniform in space and the waves measured satisfy a high frequency approximation. Although a number of authors have successfully extracted travel-time information from seismic surface-wave noise, the reason for this success of noise tomography remains unclear since the assumptions inherent in previous derivations do not hold for dispersive surface waves on the Earth. Here, we present a simple ray-theory derivation that facilitates an understanding of how cross correlations of seismic noise can be used to make direct travel-time measurements, even if the conditions assumed by previous derivations do not hold. Our new framework allows us to verify that cross-correlation measurements of isotropic surface-wave noise give results in accord with ray-theory expectations, but that if noise sources have an anisotropic distribution or if the velocity structure is non-uniform then significant differences can sometimes exist. We quantify the degree to which the sensitivity kernel is different from the geometric ray and find, for example, that the kernel width is period-dependent and that the kernel generally has non-zero sensitivity away from the geometric ray, even within our ray theoretical framework. These differences lead to usually small (but sometimes large) biases in models of seismic-wave speed and we show how our theoretical framework can be used to calculate the appropriate corrections. Even when these corrections are small, calculating the errors within a theoretical framework would alleviate fears traditional seismologists may have regarding the robustness of seismic noise tomography. [source]


Calibration of the pass-through magnetometer,II.

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2002
Application
Summary We describe the experimental procedure we use to calibrate a cryogenic pass-through magnetometer. The procedure is designed to characterize the magnetometer sensitivity as a function of position within the sensing region. Then we extend a theory developed in an earlier paper to cover inexact observations and apply it to the data set. The theory allows the calculation of a smooth, harmonic, internally consistent interpolating function for each of the nine components of the response tensor of the magnetometer. With these functions we can calculate the response to a dipole source in any orientation and position, and predict the magnetometer signal from any kind of specimen. The magnetometer in the paleomagnetic laboratory onboard the research vessel Joides Resolution is the subject of one such experiment and we present the results. The variation with position of sensitivity is displayed in a series of plane slices through the magnetometer. We discover from the calibration model that the X and Z coils are misaligned so that the magnetic centre of the coils is displaced from the geometric centre by approximately 0.7 cm. We synthesize the signal expected from the magnetometer when a variety of simple cores are measured. We find that, unless appropriate corrections are made, changes in magnetization direction can appear as variations in magnetic intensity, and conversely, fluctuations in the magnetization strength can produce apparent swings in declination and inclination. The magnitude of these effects is not small and is certainly worth taking into account in the interpretation of records from this kind of instrument. In a pilot study on data from a core measured with the shipboard magnetometer, we observe some large distortions, particularly in declination, that are attributable to uncorrected instrumental effects. [source]


Preservation causes shrinkage in seahorses: implications for biological studies and for managing sustainable trade with minimum size limits

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 4 2009
Julie L. Nadeau
Abstract 1.The implications of shrinkage associated with desiccation and ethanol preservation for seahorses (genus Hippocampus) were investigated using Hippocampus guttulatus (European long-snouted seahorse) as a model. Specifically, this research addressed the implications of preservation for taxonomy and life history studies and the application of minimum size limits (MSL) for managing seahorse trade. 2.In 2004, the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) listed all seahorse species on its Appendix II, and recommended a 10,cm MSL as an interim means of ensuring sustainable international trade. Inconsistencies in seahorse measurement methods and repeatability posed challenges for applying the MSL. Moreover, the shrinking effect of desiccation on body length observed in other fish was assumed to be negligible for seahorses because of their high degree of ossification. 3.Changes in seahorse sizes were measured following immersion in ethanol and desiccation. H. guttulatus shrank on average by 0.1,2.3% when preserved in ethanol and 3.0,6.4% when dried, depending on the trait measured. Similar trends were observed in a sample of H. kuda (yellow seahorse). Specimen posture during drying, and measurement methods also influenced estimates of size. 4.Based on the shrinkage observed, 14,44% of captured seahorses that are dried could shrink to below the recommended MSL, even if all seahorses were longer than the MSL at capture. This demonstrates that small changes in body lengths can have significant implications for trade of species managed with size limits. 5.Recommendations are to (1) standardize seahorse measurement methods, (2) consider the effects of preservation and measurement technique on body lengths, and apply appropriate corrections in comparative studies and when developing fisheries management strategies, and (3) adjust size limits at the point of capture to ensure retained seahorses comply with the CITES recommended MSL. Copyright © 2008 John Wiley & Sons, Ltd. [source]