Home About us Contact | |||
Microwave Characteristics (microwave + characteristic)
Selected AbstractsMicrowave characteristics of substrate integrated waveguide photodetectorMICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 9 2009Ebrahim Mortazy Abstract In this article, using a novel structure, simulated and measured microwave characteristics from substrate integrated waveguide photodetector (SIWPD) are obtained and compared with the conventional microstrip waveguide photodetector. A Ka-band microstrip to rectangular waveguide multilayer transition for OC-768/STM-256 optical systems is designed and fabricated. Attenuation constant results shows that by replacing substrate integrated waveguide (SIW) instead of conventional microstrip in waveguide photodetectors, operation frequency can be increased. Microwave fields in the proposed structure show a good transition from quasi-TEM mode to TE10 mode in multilayer structure. The multilayer structure is considered to separate SIW and DC bias of the photodetector. © 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 2204,2207, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24528 [source] A physics-based model of DC and microwave characteristics of GaN/AlGaN HEMTsINTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, Issue 3 2007Jonathan C. Sippel Abstract A physics-based model of AlGaN/GaN High Electron Mobility Transistor (HEMT) is developed for the analysis of DC and microwave characteristics. Large- and small-signal parameters are calculated for a given device dimensions and operating conditions. Spontaneous and piezoelectric polarizations at the heterointerface and finite effective width of the 2DEG gas have been incorporated in the analysis. The model predicts a maximum drain current of 523 mA/mm and transconductance of 138 mS/mm for a 1 ,m × 75 ,m device, which are in agreement with the experimental data. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2007. [source] Microwave characteristics of substrate integrated waveguide photodetectorMICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 9 2009Ebrahim Mortazy Abstract In this article, using a novel structure, simulated and measured microwave characteristics from substrate integrated waveguide photodetector (SIWPD) are obtained and compared with the conventional microstrip waveguide photodetector. A Ka-band microstrip to rectangular waveguide multilayer transition for OC-768/STM-256 optical systems is designed and fabricated. Attenuation constant results shows that by replacing substrate integrated waveguide (SIW) instead of conventional microstrip in waveguide photodetectors, operation frequency can be increased. Microwave fields in the proposed structure show a good transition from quasi-TEM mode to TE10 mode in multilayer structure. The multilayer structure is considered to separate SIW and DC bias of the photodetector. © 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 2204,2207, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24528 [source] |