Mixture Consisting (mixture + consisting)

Distribution by Scientific Domains


Selected Abstracts


Preparation and characterization of a molecularly imprinted monolithic column for pressure-assisted CEC separation of nitroimidazole drugs

ELECTROPHORESIS, Issue 16 2010
Sulan Liao
Abstract A polymethacrylate-based molecularly imprinted monolithic column bearing mixed functional monomers, using non-covalent imprinting approach, was designed for the rapid separation of nitroimidazole compounds. The new monolithic column has been prepared via simple in situ polymerization of 2-hydroxyethyl methacrylate, dimethylaminoethyl methacrylate and ethylene dimethacrylate, using (S)-ornidazole ((S)-ONZ) as template in a binary porogenic mixture consisting of toluene and dodecanol. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of monomers as well as the composition of the porogenic solvent. The column performance was evaluated in pressure-assisted CEC mode. Separation conditions such as pH, voltage, amount of organic modifier and salt concentration were studied. The optimized monolithic column resulted in excellent separation of a group of structurally related nitroimidazole drugs within 10,min in isocratic elution condition. Column efficiencies of 99,000, 80,000, 103,000, 60,000 and 99,000,plates/m were obtained for metronidazole, secnidazole, ronidazole, tinidazole and dimetridazole, respectively. Parallel experiments were carried out using molecularly imprinted and non-imprinted capillary columns. The separation might be the result of combined effects including hydrophobic, hydrogen bonding and the imprinting cavities on the (S)-ONZ-imprinted monolithic column. [source]


Microfluidic tectonics platform: A colorimetric, disposable botulinum toxin enzyme-linked immunosorbent assay system

ELECTROPHORESIS, Issue 10-11 2004
Jaisree Moorthy
Abstract A fabrication platform for realizing integrated microfluidic devices is discussed. The platform allows for creating specific microsystems for multistep assays in an ad hoc manner as the components that perform the assay steps can be created at any location inside the device via in situ fabrication. The platform was utilized to create a prototype microsystem for detecting botulinum neurotoxin directly from whole blood. Process steps such as sample preparation by filtration, mixing and incubation with reagents was carried out on the device. Various microfluidic components such as channel network, valves and porous filter were fabricated from prepolymer mixture consisting of monomer, cross-linker and a photoinitiator. For detection of the toxoid, biotinylated antibodies were immobilized on streptavidin-functionalized agarose gel beads. The gel beads were introduced into the device and were used as readouts. Enzymatic reaction between alkaline phosphatase (on secondary antibody) and substrate produced an insoluble, colored precipitate that coated the beads thus making the readout visible to the naked eye. Clinically relevant amounts of the toxin can be detected from whole blood using the portable enzyme-linked immunosorbent assay (ELISA) system. Multiple layers can be realized for effective space utilization and creating a three-dimensional (3-D) chaotic mixer. In addition, external materials such as membranes can be incorporated into the device as components. Individual components that were necessary to perform these steps were characterized, and their mutual compatibility is also discussed. [source]


Autocascade refrigeration system: Experimental results in achieving ultra low temperature

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 6 2009
C. Aprea
Abstract In this paper the experimental results of an autocascade refrigeration system for achieving ultra low temperature are presented. The plant is used to preserve tissue and cells. When the air temperature is equal to ,150°C in 0.25,m3 space, the required refrigeration power is about 250,W. The influence of the most meaningful variables is discussed with regard to the design of the plant. The experimental results show an acceptable time to reach the steady state in dependence of the finality of the plant. The working substance is a non-azeotropic mixture consisting of hydrofluorocarbon (HFC) refrigerants in addition to argon and methane. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Protective effects of a topical antioxidant mixture containing vitamin C, ferulic acid, and phloretin against ultraviolet-induced photodamage in human skin

JOURNAL OF COSMETIC DERMATOLOGY, Issue 4 2008
Christian Oresajo PhD
Summary Background, Ultraviolet (UV) irradiation of the skin leads to acute inflammatory reactions, such as erythema, sunburn, and chronic reactions, including premature skin aging and skin cancer. Aim, In this study, the effects of a topical antioxidant mixture consisting of vitamin C, ferulic acid, and phloretin on attenuating the harmful effects of UV irradiation on normal healthy volunteers were studied using biomarkers of skin damage. Subjects/methods, Ten subjects (age, 18,60 years; Fitzpatrick skin types II and III) were randomized and treated with antioxidant product or vehicle control on the lower back for four consecutive days. On day 3, the minimal erythema dose (MED) was determined for each subject at a different site on the back. On day 4, the two test sites received solar-simulated UV irradiation 1,5× MED at 1× MED intervals. On day 5, digital images were taken, and 4-mm punch biopsies were collected from the two 5× MED test sites and a control site from each subject for morphology and immunohistochemical studies. Results, UV irradiation significantly increased the erythema of human skin in a linear manner from 1× to 5× MED. As early as 24 h after exposure to 5× MEDs of UV irradiation, there were significant increases in sunburn cell formation, thymine dimer formation, matrix metalloproteinase-9 expression, and p53 protein expression. All these changes were attenuated by the antioxidant composition. UV irradiation also suppressed the amount of CD1a-expressing Langerhans cells, indicating immunosuppressive effects of a single 5× MED dose of UV irradiation. Pretreatment of skin with the antioxidant composition blocked this effect. Conclusion, This study confirms the protective role of a unique mixture of antioxidants containing vitamin C, ferulic acid, and phloretin on human skin from the harmful effects of UV irradiation. Phloretin, in addition to being a potent antioxidant, may stabilize and increase the skin availability of topically applied vitamin C and ferulic acid. We propose that antioxidant mixture will complement and synergize with sunscreens in providing photoprotection for human skin. [source]


Effects of Processing Conditions on Qualities of Rice Fries

JOURNAL OF FOOD SCIENCE, Issue 4 2001
R.S. Kadan
ABSTRACT Two rice flour mixtures, 2 extruding temperatures, and 2 insert sizes were used to develop rice fries. The extruded material was cut into pieces 7 to 8-cm long, prefried in rice oil at 180°C for 20 s, and kept frozen until final frying for another 70 s. The rice fries were evaluated 5 min and 10 min after final frying for their lipid, moisture, and instrumental texture characteristics. Extruding temperature, rice cultivar, and insert size were significantly related to fat content, moisture, hardness, and fracturability values. A mixture consisting of 80:20 (waxy:long-grain), and extruded at 70 °C using a 6 mm insert, 5 min after frying, gave a texture profile analysis value for hardness, cohesive-ness, and gumminess values comparable to commercial potato French fries. The rice fries made by the process also had less than 50% fat than potato fries. [source]


Preparative separation of a multicomponent peptide mixture by mass spectrometry

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 2 2006
Xinli Yang
Abstract We report on the first multiplex preparative separation by mass spectrometry of bio-organic molecules in the 200,350 Da mass range that is typical for synthetic drugs. A five-component mixture consisting of two di- and three tripeptides has been separated by mass using a specially designed mass spectrometer. The instrument for preparative separations consists of an electrospray ionization (ESI) source, ion transfer optics, an electrostatic sector, and an inhomogeneous-field magnetic mass analyzer that achieves linear mass dispersion of ion beams. Protonated peptides produced by electrospray were separated, nondestructively landed on a 16-channel array of dry collector plates, and reconstituted in solution. The preparation procedures and the instrumental conditions have been optimized to maximize the ion currents. The significant features of the special mass spectrometer are high ion currents and simultaneous separation and collection of mixture components. Copyright © 2006 John Wiley & Sons, Ltd. [source]