Home About us Contact | |||
Mixed Model Framework (mixed + model_framework)
Selected AbstractsWavelet-based functional mixed modelsJOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES B (STATISTICAL METHODOLOGY), Issue 2 2006Jeffrey S. Morris Summary., Increasingly, scientific studies yield functional data, in which the ideal units of observation are curves and the observed data consist of sets of curves that are sampled on a fine grid. We present new methodology that generalizes the linear mixed model to the functional mixed model framework, with model fitting done by using a Bayesian wavelet-based approach. This method is flexible, allowing functions of arbitrary form and the full range of fixed effects structures and between-curve covariance structures that are available in the mixed model framework. It yields nonparametric estimates of the fixed and random-effects functions as well as the various between-curve and within-curve covariance matrices. The functional fixed effects are adaptively regularized as a result of the non-linear shrinkage prior that is imposed on the fixed effects' wavelet coefficients, and the random-effect functions experience a form of adaptive regularization because of the separately estimated variance components for each wavelet coefficient. Because we have posterior samples for all model quantities, we can perform pointwise or joint Bayesian inference or prediction on the quantities of the model. The adaptiveness of the method makes it especially appropriate for modelling irregular functional data that are characterized by numerous local features like peaks. [source] Variable Selection for Semiparametric Mixed Models in Longitudinal StudiesBIOMETRICS, Issue 1 2010Xiao Ni Summary We propose a double-penalized likelihood approach for simultaneous model selection and estimation in semiparametric mixed models for longitudinal data. Two types of penalties are jointly imposed on the ordinary log-likelihood: the roughness penalty on the nonparametric baseline function and a nonconcave shrinkage penalty on linear coefficients to achieve model sparsity. Compared to existing estimation equation based approaches, our procedure provides valid inference for data with missing at random, and will be more efficient if the specified model is correct. Another advantage of the new procedure is its easy computation for both regression components and variance parameters. We show that the double-penalized problem can be conveniently reformulated into a linear mixed model framework, so that existing software can be directly used to implement our method. For the purpose of model inference, we derive both frequentist and Bayesian variance estimation for estimated parametric and nonparametric components. Simulation is used to evaluate and compare the performance of our method to the existing ones. We then apply the new method to a real data set from a lactation study. [source] An Empirical Bayes Method for Estimating Epistatic Effects of Quantitative Trait LociBIOMETRICS, Issue 2 2007Shizhong Xu Summary The genetic variance of a quantitative trait is often controlled by the segregation of multiple interacting loci. Linear model regression analysis is usually applied to estimating and testing effects of these quantitative trait loci (QTL). Including all the main effects and the effects of interaction (epistatic effects), the dimension of the linear model can be extremely high. Variable selection via stepwise regression or stochastic search variable selection (SSVS) is the common procedure for epistatic effect QTL analysis. These methods are computationally intensive, yet they may not be optimal. The LASSO (least absolute shrinkage and selection operator) method is computationally more efficient than the above methods. As a result, it has been widely used in regression analysis for large models. However, LASSO has never been applied to genetic mapping for epistatic QTL, where the number of model effects is typically many times larger than the sample size. In this study, we developed an empirical Bayes method (E-BAYES) to map epistatic QTL under the mixed model framework. We also tested the feasibility of using LASSO to estimate epistatic effects, examined the fully Bayesian SSVS, and reevaluated the penalized likelihood (PENAL) methods in mapping epistatic QTL. Simulation studies showed that all the above methods performed satisfactorily well. However, E-BAYES appears to outperform all other methods in terms of minimizing the mean-squared error (MSE) with relatively short computing time. Application of the new method to real data was demonstrated using a barley dataset. [source] |