Mitogen-activated Protein Kinase Pathway (mitogen-activated + protein_kinase_pathway)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Mitogen-activated protein kinase pathway mediates N -(4-hydroxyphenyl)retinamide-induced neuronal differentiation in the ARPE-19 human retinal pigment epithelial cell line

JOURNAL OF NEUROCHEMISTRY, Issue 2 2008
William Samuel
Abstract We have shown previously that N -(4-hydroxyphenyl)retinamide (4HPR, fenretinide), a retinoic acid derivative, induces neuronal differentiation in cultured human retinal pigment epithelial (RPE) cells [Chen et al., J. Neurochem., 84 (2003), 972]. We asked the question whether the mitogen-activated protein kinase (MAPK) pathway is involved in the regulation of the 4HPR-induced neuronal differentiation of RPE (ARPE-19) cells. When we treated ARPE-19 cells with 4HPR, c-Raf and MEK1/2 kinase were activated resulting in activation of the downstream effector ERK1/2 and of SAPK/JNK. By blocking the upstream kinase MEK1/2 with specific inhibitor U0126 we abrogated the 4HPR-induced phosphorylation of ERK1/2 and SAPK/JNK, indicating that the neuronal differentiation occurs through a positive cross-talk between the ERK and the SAPK/JNK pathways. Both U0126 and the suppression of ERK1/2 expression with small interfering RNA effectively blocked the 4HPR-induced neuronal differentiation of RPE cells and the expression of calretinin. The activated ERK1/2 then induced a sequential activation of p90RSK, and increase in phosphorylation of transcription factors c- fos and c- jun leading to transcriptional activation of AP-1. Taken together, our results clearly demonstrate that c-Raf/MEK1/2 signaling cascade involving ERK1/2 plays a central role in mediating the 4HPR-induced neuronal differentiation and calretinin expression in the human ARPE-19 retinal pigment epithelial cell line. [source]


Hepatitis B virus/hepatitis C virus upregulate angiopoietin-2 expression through mitogen-activated protein kinase pathway

HEPATOLOGY RESEARCH, Issue 10 2010
Yanmei Li
Aim:, To explore the molecular mechanism of hepatitis B virus (HBV)/hepatitis C virus (HCV) upregulate angiopoietin-2 (Ang-2) expression. Methods:, Reverse transcription polymerase chain reaction (RT,PCR), quantitative real-time (qRT),PCR and enzyme-linked immunosorbent assay (ELISA) analysis were used to measure the Ang-2 transcription and expression level. Reporter gene assays were used to determine the cis -element of the Ang-2 promoter. The specific inhibitors assay, immunofluorescence and western blot analysis were conducted to verify the signal pathway involved in the upregulation of Ang-2 expression. Results:, The level of transcription and expression of Ang-2 increased in the HepG2.2.15 and Con-1 cells. Reporter gene assays in HepG2.2.15 and Con-1 cells revealed that HBV/HCV could enhance Ang-2 promoter expression by activating AP-1 and Ets1. Analysis with specific inhibitors indicated that HBV/HCV upregulated the expression of Ang-2 through mitogen-activated protein kinase (MAPK) pathways. Conclusion:, This study illustrates a distinct mechanism by which a tumor virus modulates vasculature to promote tumorigenesis. [source]


Inhibition of low density lipoprotein receptor expression by long-term exposure to phorbol ester via p38 mitogen-activated protein kinase pathway

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2005
Jiyoung Oh
Abstract The proximal region ,234 to (+58 bp) of low-density lipoprotein receptor (LDLR) is responsible for its up-regulation by sterol regulatory element binding protein (SREBP). However, the mechanism of sterol-independent repression of LDLR has not been determined yet. In this study, we observed that there was an early induction and a later repression of LDLR by phorbol ester (PMA) in SK-Hep1 hepatocarcinoma cells and investigated the mechanisms through which PMA repressed LDLR transcription. SK-Hep1 cells were exposed to PMA and LDLR mRNA was evaluated by RT-PCR and Northern blot analysis. The effect of phorbol ester on LDLR transcriptional activity was studied using transient transfection of LDLR promoter-luciferase constructs. Overexpression of N-SREBP-2, a dominant positive SREBP2, did not reverse the PMA-repressed LDLR promoter activity. Serial deletion of LDLR promoter revealed that the region between ,1,563 and ,1,326 was responsible for the repression. The pretreatment with SB202190, an inhibitor for p38 mitogen-activated protein kinase pathway (p38-MAPK), but not other signaling inhibitors, reversed the PMA-induced repression. The 24 h-treatment with PMA efficiently arrested the SK-Hep1 cell cycle at G0/G1 as demonstrated by FACS analysis and decreased the 3H-thymidine incorporation. The PMA-induced repression of LDLR transcription may be exerted by the factor(s), not SREBP2, induced or modified by p38-MAPK-mediated signaling pathway and associated with cell cycle blockage. © 2005 Wiley-Liss, Inc. [source]


Constitutive activation of the mitogen-activated protein kinase pathway impairs vitamin D signaling in human prostate epithelial cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010
Zhentao Zhang
We studied the effect of prolonged activation of mitogen-activated protein kinase (MAPK) signaling on 1,25 dihydroxyvitamin D (1,25(OH)2D3) action in the immortalized human prostate epithelial cell line RWPE1 and its Ki-Ras transformed clone RWPE2. 1,25(OH)2D3 -treatment caused growth arrest and induced gene expression in both cell lines but the response was blunted in RWPE2 cells. Vitamin D receptor (VDR) levels were lower in RWPE2 cells but VDR over-expression did not increase vitamin-D-mediated gene transcription in either cell line. In contrast, MAPK inhibition restored normal vitamin D transcriptional responses in RWPE2 cells and MAPK activation with constitutively active MEK1R4F reduced vitamin-D-regulated transcription in RWPE1 cells. 1,25(OH)2D3 -mediated transcription depends upon the VDR and its heterodimeric partner the retinoid X receptor (RXR) so we studied whether changes in the VDR,RXR transcription complex occur in response to MAPK activation. Mutation of putative phosphorylation sites in the activation function 1 (AF-1) domain (S32A, T82A) of RXR, restored 1,25(OH)2D3 -mediated transactivation in RWPE2 cells. Mammalian two-hybrid and co-immunoprecipitation assays revealed a vitamin-D-independent interaction between steroid receptor co-activator-1 (SRC-1) and RXR, that was reduced by MAPK activation and was restored in RWPE2 cells by mutating S32 and T82 in the RXR, AF-1 domain. Our data show that a common contributor to cancer development, prolonged activation of MAPK signaling, impairs 1,25(OH)2D3 -mediated transcription in prostate epithelial cells. This is due in part to the phosphorylation of critical amino acids in the RXR, AF-1 domain and impaired co-activator recruitment. J. Cell. Physiol. 224: 433,442, 2010. © 2010 Wiley-Liss, Inc. [source]


Cyclic guanosine monophosphate signalling pathway plays a role in neural cell adhesion molecule-mediated neurite outgrowth and survival

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2007
Dorte Kornerup Ditlevsen
Abstract The neural cell adhesion molecule (NCAM) plays a crucial role in neuronal development, regeneration, and synaptic plasticity associated with learning and memory consolidation. Homophilic binding of NCAM leads to neurite extension and neuroprotection in various types of primary neurons through activation of a complex network of signalling cascades, including fibroblast growth factor receptor, Src-family kinases, the mitogen-activated protein kinase pathway, protein kinase C, phosphatidylinositol-3 kinase, and an increase in intracellular Ca2+. Here we present data indicating an involvement of cyclic GMP in NCAM-mediated neurite outgrowth in both hippocampal and dopaminergic neurons and in NCAM-mediated neuroprotection of dopaminergic neurons. In addition, evidence is presented suggesting that NCAM mediates activation of cGMP via synthesis of nitric oxide (NO) by NO synthase (NOS) and activation of soluble guanylyl cyclase by NO, leading to an increased synthesis of cGMP and activation by cGMP of protein kinase G. © 2007 Wiley-Liss, Inc. [source]


Involvement of p38 mitogen-activated protein kinase pathway in honokiol-induced apoptosis in a human hepatoma cell line (hepG2)

LIVER INTERNATIONAL, Issue 10 2008
Junfang Deng
Abstract Background: Honokiol has been known to have antitumour activity. This study was conducted to evaluate the antiproliferative potential of honokiol against the hepG2 heptocellular cell line and its mechanism of action. Methods: hepG2 cells were treated with honokiol of 0,40 ,g/ml concentration. The cytotoxic effect of honokiol was determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptosis was evaluated by flow cytometry. Western blots were used to analyse the expression of various proteins (procaspase-9, procaspase-3, cleaved caspase-3, cytochrome c, Bcl-2, Bax, Bad, Bcl-XL and p38). Results: Honokiol induced apoptosis with a decreased expression of procaspase-3 and -9 and an increased expression of active caspase-3. Exposure of hepG2 cells to honokiol resulted in the downregulation of Bcl-XL and Bcl-2 expression and the release of mitochondrial cytochrome c to the cytosol. In addition, honokiol activated the p38 mitogen-activated protein kinase (MAPK) pathway, and the inhibition of this pathway by SB203580 reduced honokiol-induced apoptosis and activation of caspase-3. Conclusion: Honokiol induces apoptosis of hepG2 human hepatocellular carcinoma cells through activation of the p38 MAPK pathway, and, in turn, activation of caspase-3. [source]


Aspects of achondroplasia in the skulls of dwarf transgenic mice: A cephalometric study

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 3 2006
Melissa Wadler Bloom
Abstract Achondroplasia, the most common short-limbed dwarfism in humans, results from a single nucleotide substitution in the gene for fibroblast growth factor receptor 3 (FGFR3). FGFR3 regulates bone growth in part via the mitogen-activated protein kinase pathway (MAPK). To examine the role of this pathway in chondrocyte differentiation, a transgenic mouse was generated that expresses a constitutively active mutant of MEK1 in chondrocytes and exhibits dwarfing characteristics typical of human achondroplasia, i.e., shortened axial and appendicular skeletons, mid-facial hypoplasia, and dome-shaped cranium. In this study, cephalometrics of the MEK1 mutant skulls were assessed to determine if the MEK1 mice are a good model of achondroplasia. Skull length, arc of the cranial vault, and area, maximum and minimum diameters of the brain case were measured on digitized radiographs of skulls of MEK1 and control mice. Cranial base and nasal bone length and foramen magnum diameter were measured on midsagittal micro-CT sections. Data were normalized by dividing by the cube root of each animal's weight. Transgenic mice exhibited a domed skull, deficient midface, and (relatively) prognathic mandible and had a shorter cranial base and nasal bone than the wild-type. Skull length was significantly less in transgenic mice, but cranial arc was significantly greater. The brain case was larger and more circular and minimum diameter of the brain case was significantly greater in transgenic mice. The foramen magnum was displaced anteriorly but not narrowed. MEK1 mouse cephalometrics confirm these mice as a model for achondroplasia, demonstrating that the MAP kinase signaling pathway is involved in FGF signaling in skeletal development. © 2006 Wiley-Liss, Inc. [source]


Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco

THE PLANT JOURNAL, Issue 4 2003
Hailing Jin
Summary The active defense of plants against pathogens often includes rapid and localized cell death known as hypersensitive response (HR). Protein phosphorylation and dephosphorylation are implicated in this event based on studies using protein kinase and phosphatase inhibitors. Recent transient gain-of-function studies demonstrated that the activation of salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK), two tobacco mitogen-activated protein kinases (MAPKs) by their upstream MAPK kinase (MAPKK), NtMEK2 leads to HR-like cell death. Here, we report that the conserved kinase interaction motif (KIM) in MAPKKs is required for NtMEK2 function. Mutation of the conserved basic amino acids in this motif, or the deletion of N-terminal 64 amino acids containing this motif significantly compromised or abolished the ability of NtMEK2DD to activate SIPK/WIPK in vivo. These mutants were also defective in interacting with SIPK and WIPK, suggesting protein,protein interaction is required for the functional integrity of this MAPK cascade. To eliminate Agrobacterium that is known to activate a number of defense responses in transient transformation experiments, we generated permanent transgenic plants. Induction of NtMEK2DD expression by dexamethasone induced HR-like cell death in both T1 and T2 plants. In addition, by using PVX-induced gene silencing, we demonstrated that the suppression of all three known components in the NtMEK2,SIPK/WIPK pathway attenuated N gene-mediated TMV resistance. Together with previous report that SIPK and WIPK are activated by TMV in a gene-for-gene-dependent manner, we conclude that NtMEK2,SIPK/WIPK pathway plays a positive role in N gene-mediated resistance, possibly through regulating HR cell death. [source]


Rapid activation of Mac-1(CD11b/CD18) molecules on macrophages by a new chemotactic factor ,Gasserokine' produced by Lactobacillus gasseri JCM1131T

ANIMAL SCIENCE JOURNAL, Issue 5 2002
Haruki KITAZAWA
ABSTRACT The chemoattractant activity of a new chemotactic factor, ,Gasserokine' produced by Lactobacillus gasseri JCM1131T, has been proposed as a novel immunological function of probiotic lactic acid bacteria. The focus of the present study was to understand the mechanism of the chemotaxis induced by Gasserokine, using activation of an adhesion molecule, Mac-1 (CD11b/CD18) on macrophages. The macrophage chemotaxis to Gasserokine was abolished by preincubation of macrophages with the anti-Mac-1 mAb. Gasserokine induced rapid serine phosphorylation of CD18 molecules within 1 min of stimulation, but the effect was short-lived. Substantial tyrosine phosphorylation was observed in CD18-associated protein of macrophages stimulated by Gasserokine. The tyrosine phosphorylation was confirmed in macrophages stimulated with Gasserokine and also serine/threonine phosphorylation was detected on CD18 molecules by laser microscopy using a double immunostaining method. These results suggest that selective activation of intracellular signaling cascades, such as the mitogen-activated protein kinase pathway, are related to the macrophage chemotaxis induced by Gasserokine. [source]


Dynamics of cell wall structure in Saccharomyces cerevisiae

FEMS MICROBIOLOGY REVIEWS, Issue 3 2002
Frans M Klis
Abstract The cell wall of Saccharomyces cerevisiae is an elastic structure that provides osmotic and physical protection and determines the shape of the cell. The inner layer of the wall is largely responsible for the mechanical strength of the wall and also provides the attachment sites for the proteins that form the outer layer of the wall. Here we find among others the sexual agglutinins and the flocculins. The outer protein layer also limits the permeability of the cell wall, thus shielding the plasma membrane from attack by foreign enzymes and membrane-perturbing compounds. The main features of the molecular organization of the yeast cell wall are now known. Importantly, the molecular composition and organization of the cell wall may vary considerably. For example, the incorporation of many cell wall proteins is temporally and spatially controlled and depends strongly on environmental conditions. Similarly, the formation of specific cell wall protein,polysaccharide complexes is strongly affected by external conditions. This points to a tight regulation of cell wall construction. Indeed, all five mitogen-activated protein kinase pathways in bakers' yeast affect the cell wall, and additional cell wall-related signaling routes have been identified. Finally, some potential targets for new antifungal compounds related to cell wall construction are discussed. [source]


Phosphatidylethanol Mediates its Effects on the Vascular Endothelial Growth Factor via HDL Receptor in Endothelial Cells

ALCOHOLISM, Issue 2 2009
Marja Katriina Liisanantti
Background:, Previous epidemiological studies have shown that light to moderate alcohol consumption has protective effects against coronary heart disease but the mechanisms of the beneficial effect of alcohol are not known. Ethanol may increase high density lipoprotein (HDL) cholesterol concentration, augment the reverse cholesterol transport, or regulate growth factors or adhesion molecules. To study whether qualitative changes in HDL phospholipids mediate part of the beneficial effects of alcohol on atherosclerosis by HDL receptor, we investigated whether phosphatidylethanol (PEth) in HDL particles affects the secretion of vascular endothelial growth factor (VEGF) by a human scavenger receptor CD36 and LIMPII analog-I (CLA-1)-mediated pathway. Methods:, Human EA.hy 926 endothelial cells were incubated in the presence of native HDL or PEth-HDL. VEGF concentration and CLA-1 protein expression were measured. Human CLA-1 receptor-mediated mechanisms in endothelial cells were studied using CLA-1 blocking antibody and protein kinase inhibitors. Results:, Phosphatidylethanol-containing HDL particles caused a 6-fold increase in the expression of CLA-1 in endothelial cells compared with the effect of native HDL. That emergent effect was mediated mainly through protein kinase C and p44/42 mitogen-activated protein kinase pathways. PEth increased the secretion of VEGF and that increase could be abolished by a CLA-1 blocking antibody. Conclusions:, High density lipoprotein particles containing PEth bind to CLA-1 receptor and thereby increase the secretion of VEGF from endothelial cells. Ethanol-induced protective effects against coronary heart disease may be explained, at least partly, by the effects of PEth-modified HDL particles on VEGF via CLA-1-mediated mechanisms in endothelial cells. [source]


Insights into Serotonin Signaling Mechanisms Associated with Canine Degenerative Mitral Valve Disease

JOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 1 2010
M.A. Oyama
Little is known about the molecular abnormalities associated with canine degenerative mitral valve disease (DMVD). The pathology of DMVD involves the differentiation and activation of the normally quiescent mitral valvular interstitial cell (VIC) into a more active myofibroblast phenotype, which mediates many of the histological and molecular changes in affected the valve tissue. In both humans and experimental animal models, increased serotonin (5-hydroxytryptamine, 5HT) signaling can induce VIC differentiation and myxomatous valve damage. In canine DMVD, numerous lines of evidence suggest that 5HT and related molecules such as transforming growth factor-, play a critical role in the pathogenesis of this disease. A variety of investigative techniques, including gene expression, immunohistochemistry, protein blotting, and cell culture, shed light on the potential role of 5HT in the differentiation of VIC, elaboration of myxomatous extracellular matrix components, and activation of mitogen-activated protein kinase pathways. These studies help support a hypothesis that 5HT and its related pathways serve as an important stimulus in canine DMVD. This review describes the pathological characteristics of canine DMVD, the organization and role of the 5HT pathway in valve tissue, involvement of 5HT in human and experimental models of valve disease, avenues of evidence that suggest a role for 5HT in naturally occurring DMVD, and finally, a overarching hypothesis describing a potential role for 5HT in canine DMVD. [source]


Interleukin-4 increases murine airway response to kinins, via up-regulation of bradykinin B1 -receptors and altered signalling along mitogen-activated protein kinase pathways

CLINICAL & EXPERIMENTAL ALLERGY, Issue 8 2004
M. Bryborn
Summary Background IL-4 is believed to play a role in asthma and chronic obstructive pulmonary disease through promotion of eosinophilic inflammation and mucus hypersecretion. Whether IL-4 can induce a direct effect on airway smooth muscle remains unknown. Objective To investigate the effect of IL-4 on airway smooth muscle, focusing on the contractile response to des-Arg9 -bradykinin and bradykinin. Methods Tracheal segments from murine airways were cultured for 1,8 days in the absence and presence of IL-4. The smooth muscle response induced by des-Arg9 -bradykinin and bradykinin was investigated in myographs. Expression levels for the IL-4-, bradykinin B1 - and B2 -receptors were characterized using RT-PCR. Specific inhibitors were used to study signal changes along the IL-4 receptor- (IL-4R-) coupled mitogen-activated protein (MAP) kinase (MAPK) pathways. Results IL-4 treatment increased the contractile response to des-Arg9 -bradykinin and bradykinin in a concentration- and time-dependent manner. Dexamethasone and the transcriptional inhibitor actinomycin D blocked this effect. c-Jun N-terminal kinase inhibitor SP600125 also blocked the effect of both des-Arg9 -bradykinin and bradykinin, whereas p38 inhibitor SB203580 blocked only the former and the MAPKK inhibitor PD098059, only the latter agonist responses. IL-4 treatment increased the mRNA levels representing bradykinin B1 - but not B2 -receptors. Levels of IL-4R were not altered during culture. Conclusion Long-term exposure to IL-4 increases the contractile response induced by des-Arg9 -bradykinin and bradykinin in cultured murine airways. This effect appears to be mediated via an up-regulation of B1 -receptors and altered signalling along the MAPK pathways. [source]