Mitochondrial Membrane Potential (mitochondrial + membrane_potential)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Mitochondrial Membrane Potential

  • decreased mitochondrial membrane potential


  • Selected Abstracts


    Mitochondrial Membrane Potential Selects Hybridomas Yielding High Viability in Fed-Batch Cultures

    BIOTECHNOLOGY PROGRESS, Issue 1 2002
    Brian D. Follstad
    Prior research (Follstad, B. D.; Wang, D. I. C.; Stephanopoulos, G. Mitochondrial membrane potential differentiates cells resistant to apoptosis in hybridoma cultures. Eur. J. Biochem. 2000, 267, 6534,6540.) identified mitochondrial membrane potential (MMP) as a marker of hybridoma subpopulations resistant to apoptosis caused by a variety of apoptosis inducers. In this study, we investigated the viability of hybridoma cell cultures inoculated with cells of varying MMP in regular fed-batch operation. A hybridoma cell population was separated using FACS into subpopulations based on their mean mitochondrial membrane potential (MMP) as measured using the common mitochondrial stain, Rhodamine 123 (Rh123). These subpopulations showed dramatic differences in their apoptotic death kinetics. Fed-batches inoculated with a high MMP subpopulation reached higher viable cell concentrations and viabilities that were maintained for prolonged periods of time relative to fed-batches inoculated with low MMP subpopulations. These results underline the heterogeneous nature of hybridoma cell cultures and suggest that mitochondrial physiology is a critical parameter determining culture performance. [source]


    Alpha-fetoprotein-specific transfer factors downregulate alpha-fetoprotein expression and specifically induce apoptosis in Bel7402 alpha-fetoprotein-positive hepatocarcinoma cells

    HEPATOLOGY RESEARCH, Issue 7 2007
    Hui Zhang
    Aim:, To investigate the mechanisms of AFP-specific transfer factors (AFP-TF) in induced Bel7402 cells apoptosis. Further, we investigate the interaction between AFP-TF and AFP in the apoptosis. Methods:, Bel7402 and HepG2 AFP-positive hepatocarcinoma cell lines, SK-Hep-1 AFP-negative hepatocarcinoma cell line and Changliver normal liver cell line are used. Cell viability is evaluated by MTT assay and apoptosis is measured by Hoechst33342 staining and TUNEL assay. FACS is used to analyze the cell cycle. AFP expression is examined by RT-PCR, Western blotting and immunocytochemistry. The interaction between AFP-TF and AFP in the apoptosis is investigated by addition of AFP in cultures or AFP transfection in Bel7402 cells prior to AFP-TF treatment. Mitochondrial membrane potential (,,m) and intracellular Ca2+ concentration are respectively measured by Rhodamine123 and Fluo-3 AM Ester. Western blotting detects the involvement of several apoptosis-related proteins. Finally, caspase-3 and Caspase-9 activity are respectively examined. Results:, AFP-TF can induce apoptosis in Bel7402 and HepG2 AFP-positive hepatocarcinoma cells, but not SK-Hep-1 and Changliver cells. AFP-mRNA level changes little in apoptotic Bel7402 cells; while AFP expression is downregulated and uniformly dispersed throughout the whole cell. Addition of exogenous AFP or overexpression of intracellular AFP can reduce such apoptotic effect. Besides, apoptotic Bel7402 cells show a disruption of ,,m, an immediate elevation of Ca2+ concentration, a prominently decreased ratio of bcl-2 to bax, a release of cytochrome c from mitochondria to cytosol, and ultimately an activation of caspase-9 and caspase-3. Conclusion:, AFP-TF induced Bel7402 cells apoptosis is mitochondrial-dependent and is mediated by the interaction of AFP-TF with intracellular AFP. [source]


    Correlation of the Mitochondrial Activity of Two-Cell Embryos Produced In Vitro and the Two-Cell Block In Kunming and B6C3F1 Mice

    THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 5 2009
    Shie Wang
    Abstract The correlation between the early embryonic block to development and mitochondrial activity was investigated comparing two-cell embryos produced in vitro from Kunming (KM) and B6C3F1 mice. One-cell embryos were obtained from two species of hybrids (female KM mice mated with KM males and female B6C3F1 mice mated with KM males) and cultured for 84 hr in M16 media. The mitochondrial membrane potential, ATP content, and reactive oxygen species levels were measured in the resulting KM and B6C3F1 two-cell embryos. Mitochondrial membrane potential and ATP content were also determined in KM and B6C3F1 metaphase II eggs. The results showed that the two-cell block was observed in cultured KM embryos but not in B6C3F1 embryos. Mitochondrial membrane potential and ATP content of KM two-cell embryos were significantly lower than in B6C3F1 two-cell embryos (P < 0.01). Interestingly, the reactive oxygen species levels of KM two-cell embryos were significantly lower than their B6C3F1 counterparts (P < 0.01). There was no difference in mitochondrial membrane potential and ATP content between KM and B6C3F1 metaphase II eggs. It is concluded that KM mice have an early two-cell embryo block and that a possible "blocking" mechanism is the lower mitochondrial membrane potential and ATP content in these embryos. The results suggest a new approach for overcoming early embryonic development block, that of manipulating mitochondrial activity. Anat Rec, 292:661,669, 2009. © 2009 Wiley-Liss, Inc. [source]


    Integrity of mitochondrial membrane potential reflects human sperm quality

    ANDROLOGIA, Issue 1 2009
    J. A. Espinoza
    Summary The aim of this work was to evaluate intracellular reactive oxygen species (ROS) levels, phosphatidylserine (PS) externalisation and mitochondrial membrane potential integrity in the spermatozoa of healthy donors and outpatients who consulted for infertility and to correlate the results with the classic sperm parameters. For the evaluation of intracellular ROS levels, PS externalisation and mitochondrial membrane potential integrity, the fluorescent compounds dihydroethidium, annexin V-FITC and JC-1, respectively, were used and analysed by using flow cytometry. Conventional seminal analysis, including motility, viability, morphology, sperm count and volume, was performed according to the WHO criteria. The mitochondrial membrane potential and ROS results showed significant differences between the spermatozoa of individuals with a normal semen analysis and those of the group presenting abnormality in at least one of the sperm parameters. Mitochondrial membrane potential showed a significant and direct correlation with all the sperm parameters analysed. ROS were inversely correlated with motility, viability and morphology. PS externalisation, however, did not show any differences between the two groups, nor was it correlated with the sperm parameters examined. The evaluation of mitochondrial membrane potential integrity is a test that reflects sperm quality, which makes it highly recommendable to be applied as a complement to routine sperm analyses. [source]


    Mitochondrial Membrane Potential Selects Hybridomas Yielding High Viability in Fed-Batch Cultures

    BIOTECHNOLOGY PROGRESS, Issue 1 2002
    Brian D. Follstad
    Prior research (Follstad, B. D.; Wang, D. I. C.; Stephanopoulos, G. Mitochondrial membrane potential differentiates cells resistant to apoptosis in hybridoma cultures. Eur. J. Biochem. 2000, 267, 6534,6540.) identified mitochondrial membrane potential (MMP) as a marker of hybridoma subpopulations resistant to apoptosis caused by a variety of apoptosis inducers. In this study, we investigated the viability of hybridoma cell cultures inoculated with cells of varying MMP in regular fed-batch operation. A hybridoma cell population was separated using FACS into subpopulations based on their mean mitochondrial membrane potential (MMP) as measured using the common mitochondrial stain, Rhodamine 123 (Rh123). These subpopulations showed dramatic differences in their apoptotic death kinetics. Fed-batches inoculated with a high MMP subpopulation reached higher viable cell concentrations and viabilities that were maintained for prolonged periods of time relative to fed-batches inoculated with low MMP subpopulations. These results underline the heterogeneous nature of hybridoma cell cultures and suggest that mitochondrial physiology is a critical parameter determining culture performance. [source]


    The novel ruthenium,, -linolenic complex [Ru2(aGLA)4Cl] inhibits C6 rat glioma cell proliferation and induces changes in mitochondrial membrane potential, increased reactive oxygen species generation and apoptosis in vitro

    CELL BIOCHEMISTRY AND FUNCTION, Issue 1 2010
    Geise Ribeiro
    Abstract The present study reports the synthesis of a novel compound with the formula [Ru2(aGLA)4Cl] according to elemental analyses data, referred to as Ru2GLA. The electronic spectra of Ru2GLA is typical of a mixed valent diruthenium(II,III) carboxylate. Ru2GLA was synthesized with the aim of combining and possibly improving the anti-tumour properties of the two active components ruthenium and , -linolenic acid (GLA). The properties of Ru2GLA were tested in C6 rat glioma cells by analysing cell number, viability, lipid droplet formation, apoptosis, cell cycle distribution, mitochondrial membrane potential and reactive oxygen species. Ru2GLA inhibited cell proliferation in a time and concentration dependent manner. Nile Red staining suggested that Ru2GLA enters the cells and ICP-AES elemental analysis found an increase in ruthenium from <0.02 to 425,mg/Kg in treated cells. The sub-G1 apoptotic cell population was increased by Ru2GLA (22,±,5.2%) when analysed by FACS and this was confirmed by Hoechst staining of nuclei. Mitochondrial membrane potential was decreased in the presence of Ru2GLA (44,±,2.3%). In contrast, the cells which maintained a high mitochondrial membrane potential had an increase (18,±,1.5%) in reactive oxygen species generation. Both decreased mitochondrial membrane potential and increased reactive oxygen species generation may be involved in triggering apoptosis in Ru2GLA exposed cells. The EC50 for Ru2GLA decreased with increasing time of exposure from 285,µM at 24,h, 211,µM at 48,h to 81,µM at 72,h. In conclusion, Ru2GLA is a novel drug with antiproliferative properties in C6 glioma cells and is a potential candidate for novel therapies in gliomas. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Isoliquiritigenin, a natural anti-oxidant, selectively inhibits the proliferation of prostate cancer cells

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 8 2010
    Xiaoyu Zhang
    Summary 1.,Isoliquiritigenin (ISL) is a simple chalcone-type flavonoid derived from liquorice compounds. It has been reported to have anti-oxidative and antitumour activities. The aim of the present study was to investigate the antitumour effect of ISL on prostate cancer cells and to explore the possible signalling mechanisms involved. 2.,Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The fluorescent probe 2,,7,-dichlorofluorescein diacetate (H2DCF-DA) was used to measure intracellular levels of reactive oxygen species (ROS). Mitochondrial membrane potential (,m) was measured using the mitochondrial probe 5,5,,6,6,-tetrachloro-1,1,,3,3,-tetraethyl-benzimidazolylcarbocyanine iodide (JC-1). 3.,Isoliquiritigenin treatment (10,100 ,mol/L for 24 h) markedly inhibited the proliferation of both C4-2 and LNCaP prostate cancer cells in a dose-dependent manner. Intriguingly, ISL treatment (10,100 ,mol/L for 24 h) had no effect on the viability of IEC-6 normal epithelial cells. Treatment of C4-2 and IEC-6 cells with 87.0 ,mol/L ISL significantly decreased ROS levels and the ,m of C4-2 cells, but had no effect on either parameter in IEC-6 cells. Furthermore, AMP-activated protein kinase (AMPK) and extracellular-signal regulated kinase (ERK) levels were three to fourfold higher in IEC-6 cells than in C4-2 cells (P < 0.05). 4.,The results of the present study suggest that ISL, a natural anti-oxidant, selectively inhibits the proliferation of prostate cancer C4-2 cells, which may be attributed, in part, to defective AMPK and ERK signalling pathways in C4-2 compared with IEC-6 cells. [source]


    Cardioprotection of bradykinin at reperfusion involves transactivation of the epidermal growth factor receptor via matrix metalloproteinase-8

    ACTA PHYSIOLOGICA, Issue 4 2009
    C. Methner
    Abstract Aim:, The endogenous autacoid bradykinin (BK) reportedly reduces myocardial infarct size when given exogenously at reperfusion. Muscarinic and opioid G-protein-coupled receptors are equally protective and have been shown to couple through a matrix metalloproteinase (MMP)-dependent transactivation of the epidermal growth factor receptor (EGFR). Here we test whether BK protects the rat heart through the EGFR by an MMP-dependent pathway. Methods:, Infarct size was measured in isolated perfused rat hearts undergoing 30 min regional ischaemia followed by 120 min reperfusion. In additional studies HL-1 cardiomyocytes were loaded with tetramethylrhodamine ethyl to measure their mitochondrial membrane potential (,m). Adding the calcium ionophore calcimycin, causes ,m-collapse presumably due to calcium-induced mitochondrial permeability transition. Results:, As expected, BK (100 nmol L,1) started 5 min prior to reperfusion reduced infarct size from 38.9 ± 2.0% of the ischaemic zone in control hearts to 22.2 ± 3.3% (P < 0.001). Co-infusing the EGFR inhibitor AG1478, the broad-spectrum MMP-inhibitor GM6001, or a highly selective MMP-8 inhibitor abolished BK's protection, thus suggesting an MMP-8-dependent EGFR transactivation in the signalling. Eighty minutes of exposure to calcimycin reduced the mean cell fluorescence to 37.4 ± 1.8% of untreated cells while BK could partly preserve the fluorescence and, hence, protect the cells (50.5 ± 2.3%, P < 0.001). The BK-induced mitochondrial protection could again be blocked by AG1478, GM6001 and MMP-8 inhibitor. Finally, Western blotting revealed that BK's protection was correlated with increased phosphorylation of EGFR and its downstream target Akt. Conclusion:, These results indicate that BK at reperfusion triggers its protective signalling pathway through MMP-8-dependent transactivation of the EGFR. [source]


    Protective effect of CPUX1, a progesterone, on hydrogen peroxide-induced oxidative damage in PC12 cells,

    DRUG DEVELOPMENT RESEARCH, Issue 8 2008
    Bian-sheng Ji
    Abstract The protective effect of CPUX1, a novel progesterone analog, on hydrogen peroxide (H2O2)-induced oxidative damage was investigated in rat pheochromocytoma (PC12) cells. Following the exposure of PC12 cells to H2O2, there was a reduction in cell survival and activities of superoxide dismutase (SOD) and mitochondrial membrane potential (MMP) accompanied by increased levels of lactate dehydrogenase (LDH) release, malondialdehyde (MDA) production, and intracellular reactive oxygen species (ROS) and intracellular [Ca2+]i levels. Preincubation of cells with CPUX1 prior to H2O2 exposure attenuated all these changes mentioned and had a protective effect against H2O2 -induced toxicity in PC12 cells, indicating that the compound may have potential therapeutic benefit for CNS disorders influenced by oxidative damage. Drug Dev Res 69: 2008 ©2008 Wiley-Liss, Inc. [source]


    Hydrophobic derivatives of 5-(hydroxymethyl)isophthalic acid that selectively induce apoptosis in leukemia cells but not in fibroblasts,,

    DRUG DEVELOPMENT RESEARCH, Issue 4 2008
    Anna Galkin
    Abstract New apoptosis modulating agents are widely sought, because failure in regulation of apoptosis is associated with many diseases. In this study, we have evaluated apoptosis inducing the potential of ten new hydrophobic derivatives of 5-(hydroxymethyl)isophthalic acid. Cancerous leukemia cells (HL-60) and non-malignant fibroblasts (Swiss 3T3) were incubated with test compounds for 24,h and morphologically evaluated. The changes in mitochondrial membrane potential (,,m) and caspase-3 activity were used to confirm the results and to study early induction of apoptosis. Cytotoxicity was determined using the lactate dehydrogenase (LDH) assay and mutagenicity with miniaturized Ames-test. The most potent selective apoptosis inducers were compounds 1c and 1,h having IC50 values of 41 and 23,µM, respectively, in leukemia cells (HL-60) while effects in fibroblasts (Swiss 3T3) were insignificant. Reduction of ,,m and increase in caspase-3 activity were observed already during the first 2,hr in the HL-60 cells treated with compounds 1,c and 1,h. Neither of the compounds was cytotoxic or mutagenic. The results indicate that compounds 1,c and 1,h are selective apoptosis inducers and should be studied further for possible use in cancer therapy. Drug Dev. Res. 69: 185,195, 2008. © 2008 Wiley-Liss, Inc. [source]


    Walker tumor cells express larger amounts of the antiapoptotic protein Bcl-2 and presents higher resistance to toxic concentrations of Ca2+ than the tumor cells K 562

    DRUG DEVELOPMENT RESEARCH, Issue 4 2001
    Graziela Milani
    Abstract Ca2+ homeostasis was studied in two tumor cell lines (Walker 256 and K 562) previously shown to exhibit different mitochondrial Ca2+ accumulation capacity. When intact, both cells present cytosolic Ca2+ concentrations within the range expected for mammalian cells, as determined through fura-2 fluorescence ratios. In order to study intracellular Ca2+ distribution, digitonin was used to permeabilize the plasma membrane without affecting intracellular organelle structure, as assessed using electron microscopy. Digitonin-permeabilized Walker 256 cells incubated with Ca2+ presented uptake of the cation exclusively through mitochondrial activity. In addition, very large Ca2+ loads were necessary to promote a disruption of Walker 256 mitochondrial membrane potential. K 562 cells presented active Ca2+ uptake through both nonmitochondrial and mitochondrial compartments and suffered disruption of mitochondrial membrane potential at lower Ca2+ loads than Walker 256 mitochondria. The higher Ca2+ resistance in Walker 256 cells could be attributed to Bcl-2 overexpression, as evidenced by immunocytochemical staining. Thus, we correlate natural Bcl-2 overexpression, observed in Walker 256 cells, with higher resistance to mitochondrial Ca2+ overload, as was shown previously in mitochondria from cells transfected with the bcl-2 gene. Drug Dev. Res. 52:508,514, 2001. © 2001 Wiley-Liss, Inc. [source]


    The Effects of Ecstasy (MDMA) on Rat Liver Bioenergetics

    ACADEMIC EMERGENCY MEDICINE, Issue 7 2004
    Daniel E. Rusyniak MD
    Abstract Objectives: Use of the drug ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) can result in life-threatening hyperthermia. Agents that uncouple mitochondrial oxidative phosphorylation are known to cause severe hyperthermia. In the present study, the authors tested the hypothesis that MDMA directly uncouples oxidative phosphorylation in rat liver mitochondria. Methods: Effects on mitochondrial bioenergetics were assessed both in vitro and ex vivo. In vitro studies consisted of measuring the effects of MDMA (0.1,5.0 mmol/L) on states of respiration in isolated rat liver mitochondria and on mitochondrial membrane potential in a rat liver cell line. In ex vivo studies, mitochondrial rates of respiration were measured in the livers of rats one hour after treatment with MDMA (40 mg/kg subcutaneously). Results: With the in vitro mitochondrial preparations, only concentrations of 5 mmol/L MDMA showed evidence of uncoupling with a slight increase in state 4 respiration and a corresponding decrease in the respiratory control index. MDMA (0.1,5.0 mmol/L) failed to decrease the mitochondrial membrane potential in 3,3-dihexyloxacarbocyanide iodide,stained WB-344 cells after either one or 24 hours of incubation. Ex vivo rates of respiration obtained from the livers of rats one hour after treatment with MDMA (40 mg/kg subcutaneously) showed no evidence of mitochondrial uncoupling. Conclusions: These data suggest that while high concentrations of MDMA have some mild uncoupling effects in isolated mitochondria, these effects do not translate to cell culture or ex vivo studies in treated animals. These data do not support the view that the hyperthermia induced by MDMA is from a direct effect on mitochondrial oxidative phosphorylation. [source]


    Activation of JNK and PAK2 is essential for citrinin-induced apoptosis in a human osteoblast cell line

    ENVIRONMENTAL TOXICOLOGY, Issue 4 2009
    Yu-Ting Huang
    Abstract The mycotoxin citrinin (CTN), a natural contaminant in foodstuffs and animal feeds, exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis. Previous studies by our group showed that CTN triggers apoptosis in mouse embryonic stem cells, as well as embryonic developmental injury. Here, we investigated the precise mechanisms governing this apoptotic effect in osteoblasts. CTN induced apoptotic biochemical changes in a human osteoblast cell line, including activation of c-Jun N-terminal kinase (JNK), loss of mitochondrial membrane potential, and caspase-3 and p21-activated protein kinase 2 (PAK2) activation. Experiments using a JNK-specific inhibitor, SP600125, and antisense oligonucleotides against JNK reduced CTN-induced activation of both JNK and caspase-3 in osteoblasts, indicating that JNK is required for caspase activation in this apoptotic pathway. Experiments using caspase-3 inhibitors and antisense oligonucleotides against PAK2 revealed that active caspase-3 is essential for PAK2 activation. Moreover, both caspase-3 and PAK2 require activation for CTN-induced apoptosis of osteoblasts. Interestingly, CTN stimulates two-stage activation of JNK in human osteoblasts. Early-stage JNK activation is solely ROS-dependent, whereas late-stage activation is dependent on ROS-mediated caspase activity, and regulated by caspase-induced activation of PAK2. On the basis of these results, we propose a signaling cascade model for CTN-induced apoptosis in human osteoblasts involving ROS, JNK, caspases, and PAK2. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2009. [source]


    Influence of intracellular Ca2+, mitochondria membrane potential, reactive oxygen species, and intracellular ATP on the mechanism of microcystin-LR induced apoptosis in Carassius auratus lymphocytes in vitro

    ENVIRONMENTAL TOXICOLOGY, Issue 6 2007
    H. Zhang
    Abstract Microcystin-LR (MCLR), the most toxic microcystin up to date, could induce apoptosis in many kinds of fish and mammalian cells. For the fish immunotoxicity, it was found that MCLR could induce apoptosis in Carassius auratus lymphocytes in vitro. So this study focused on the role of intracellular Ca2+, mitochondrial membrane potential, reactive oxygen species (ROS), and intracellular ATP in response to the mechanisms of MCLR-induced apoptosis in fish lymphocytes. MCLR (10 nM) administration resulted in a massive elevation in ROS, intracellular Ca2+, decreased ATP, and rapid mitochondrial membrane potential (,,m) disruption. When compared to controls, both a fourfold significant (P < 0.001) elevation in O2, in 1.5 h and an approximately twofold increase in Ca2+ in 0.5 h were observed. After 6 h of treatment, an approximately 30% decrease for ,,m but about 75% decline for ATP were found. Together, the results demonstrated that MCLR-induced apoptosis was associated with a massive calcium influx, resulting in O2, elevation, ,,m disruption, and ATP depletion. This study provided a possible cytotoxic mechanism of fish lymphocytes caused by MCLR. © 2007 Wiley Periodicals, Inc. Environ Toxicol 22: 559,564, 2007. [source]


    Haemodialysis induces mitochondrial dysfunction and apoptosis

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 12 2007
    D. S. C. Raj
    Abstract Background Mitochondria play a crucial role in the regulation of the endogenous pathways of apoptosis activated by oxidant stress. Nuclear factor-,B (NF-,B) is a central integration site for pro-inflammatory signals and oxidative stress. Materials and methods Peripheral blood mononuclear cells (PBMC) were isolated from eight end-stage renal disease (ESRD) patients before haemodialysis (Pre-HD) and during the last 10 min of HD (End-HD). A new polysulfone membrane (F70, Fresenius) was used for dialysis. Intracellular generation of reactive oxygen species (ROS), mitochondrial redox potential (,,m) and PBMC apoptosis were determined by flow-cytometry. Results Plasma levels of interleukin-6 (IL-6) (24·9 ± 7·0 vs. 17·4 ± 5·5 pg dL,1, P < 0·05), IL-6 soluble receptor (52·2 ± 4·9 vs. 37·6 ± 3·2 ng dL,1, P < 0·02) and IL-6 gp130 (405·7 ± 41·0 vs. 235·1 ± 38·4 ng dL,1, P < 0·02) were higher end-HD compared to pre-HD. IL-6 secretion by the isolated PBMC (24·0 ± 2·3 vs. 19·3 ± 3·5 pg dL,1, P < 0·02) increased end-HD. Percentage of lymphocytes exhibiting collapse of mitochondrial membrane potential (43·4 ± 4·6% vs. 32·6 ± 2·9%, P < 0·01), apoptosis (33·4 ± 7·1% vs. 23·7 ± 7·7%, P < 0·01), and generation of superoxide (20·7 ± 5·2% vs. 12·5 ± 2·9%, P < 0·02) and hydrogen peroxide (51·1 ± 7·8% vs.38·2 ± 5·9%, P < 0·04) were higher at end-HD than pre-HD. NF-,B activation (3144·1 ± 208·1 vs. 2033·4 ± 454·6 pg well,1, P < 0·02), expression of B-cell lymphoma protein-2 (6494·6 ± 1461 vs. 3501·5 ± 796·5 ng mL,1, P < 0·03) and heat shock protein-70 (9·81 ± 1·47 vs. 6·38 ± 1·0 ng mL,1, P < 0·05) increased during HD. Conclusions Intra-dialytic activation of cytokines, together with impaired mitochondrial function, promotes generation of ROS culminating in augmented PBMC apoptosis. There is concomitant activation of pathways aimed at attenuation of cell stress and apoptosis during HD. [source]


    Analysis of mitochondria by capillary electrophoresis: cardiolipin levels decrease in response to carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone

    EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 9 2010
    Wenfeng Zhao
    Abstract Cardiolipin is an important phospholipid present in the inner membrane of mitochondria. It plays a critical role in adenosine triphosphate (ATP) synthesis mediated by oxidative phosphorylation. Exposure of HepG2 cells to carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) caused the inhibition of ATP synthesis and the depolarization of mitochondria. Capillary electrophoresis with laser-induced fluorescence (CE-LIF) analysis of fluorescent mitochondrion-selective probe 10-N-nonyl acridine orange (NAO) labeled mitochondria was employed to in situ estimate the cardiolipin levels under FCCP-induced de-energization of mitochondria. NAO, stoichiometriclly bound to cardiolipin at a 1:1 or 2:1 molar ratio (NAO/cardiolipin), emitted green and red fluorescence, respectively. Green fluorescence was chosen for cardiolipin content analysis because it was more intense than red fluorescence. A significant decrease in the cardiolipin content, up to 11% of the control, was evident when the ATP content and mitochondrial membrane potential (MMP) correspondingly decreased. These related findings suggested that CE-LIF may provide a sensitive strategy to determine cardiolipin content in response to exposure to chemical uncouplers. This reinforces the hypothesis that alterations in ATP synthesis and MMP have a close association with cardiolipin content, which correlated tightly with mitochondrial membrane assembly and activity. [source]


    Involvement of mitochondrial signaling pathways in the mechanism of Fas-mediated apoptosis after spinal cord injury

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2009
    Wen Ru Yu
    Abstract Activation of the Fas receptor has been recently linked to apoptotic cell death after spinal cord injury (SCI). Although it is generally considered that Fas activation mediates apoptosis predominantly through the extrinsic pathway, we hypothesized that intrinsic mitochondrial signaling could be involved in the underlying mechanism of Fas-induced apoptosis after SCI. In the present study, we utilized the FejotaTM clip compression model of SCI at T5,6 in C57BL/6 Fas-deficient (lpr) and wild-type mice. Complementary studies were conducted using an in vitro model of trauma or a Fas-activating antibody to induce apoptosis in primary neuronal,glial mixed spinal cord cultures. After in vivo SCI, lpr mice, in comparison with wild-type mice, exhibited reduced numbers of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells at the lesion, reduced expression of truncation of Bid (tBid), apoptosis-inducing factor, activated caspase-9 and activated caspase-3, and increased expression of the antiapoptotic proteins Bcl-2 and Bcl-xL. After in vitro neurotrauma or the induction of Fas signaling by the Jo2 activating antibody, lpr spinal cord cultures showed an increased proportion of cells retaining mitochondrial membrane integrity and a reduction of tBid expression, caspase-9 and caspase-3 activation, and TUNEL-positive cells as compared to wild-type spinal cord cultures. The neutralization of Fas ligand (FasL) protected against traumatically induced or Fas-mediated caspase-3 activation and the loss of mitochondrial membrane potential and tBid expression in wild-type spinal cord cultures. However, in lpr spinal cord cultures, FasL neutralization had no protective effects. In summary, these data provide direct evidence for the induction of intrinsic mitochondrial signaling pathways following Fas activation after SCI. [source]


    A folding variant of human ,-lactalbumin induces mitochondrial permeability transition in isolated mitochondria

    FEBS JOURNAL, Issue 1 2001
    Camilla Köhler
    A human milk fraction containing multimeric ,-lactalbumin (MAL) is able to kill cells via apoptosis. MAL is a protein complex of a folding variant of ,-lactalbumin and lipids. Previous results have shown that upon treatment of transformed cells, MAL localizes to the mitochondria and cytochrome c is released into the cytosol. This is followed by activation of the caspase cascade. In this study, we further investigated the involvement of mitochondria in apoptosis induced by the folding variant of ,-lactalbumin. Addition of MAL to isolated rat liver mitochondria induced a loss of the mitochondrial membrane potential (,,m), mitochondrial swelling and the release of cytochrome c. These changes were Ca2+ -dependent and were prevented by cyclosporin A, an inhibitor of mitochondrial permeability transition. MAL also increased the rate of state 4 respiration in isolated mitochondria by exerting an uncoupling effect. This effect was due to the presence of fatty acids in the MAL complex because it was abolished completely by BSA. BSA delayed, but failed to prevent, mitochondrial swelling as well as dissipation of ,,m, indicating that the fatty acid content of MAL facilitated, rather than caused, these effects. Similar results were obtained with HAMLET (human ,-lactalbumin made lethal to tumour cells), which is native ,-lactalbumin converted in vitro to the apoptosis-inducing folding variant of the protein in complex with oleic acid. Our findings demonstrate that a folding variant of ,-lactalbumin induces mitochondrial permeability transition with subsequent cytochrome c release, which in transformed cells may lead to activation of the caspase cascade and apoptotic death. [source]


    Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress,induced caspase-12 activation

    HEPATOLOGY, Issue 3 2002
    Qing Xie
    Activation of death receptors and mitochondrial damage are well-described common apoptotic pathways. Recently, a novel pathway via endoplasmic reticulum (ER) stress has been reported. We assessed the role of tauroursodeoxycholic acid (TUDCA) in inhibition of caspase-12 activation and its effect on calcium homeostasis in an ER stress-induced model of apoptosis. The human liver-derived cell line, Huh7, was treated with thapsigargin (TG) to induce ER stress. Typical morphologic changes of ER stress preceded development of apoptotic changes, including DNA fragmentation and cleavage of poly (adenosine diphosphate-ribose) polymerase (PARP), as well as activation of caspase-3 and -7. Elevation of intracellular calcium levels without loss of mitochondrial membrane potential (MMP) was shown using Fluo-3/Fura-red labeling and flow cytometry, and confirmed by induction of Bip/GRP78, a calcium-dependent chaperon of ER lumen. These changes were accompanied by procaspase-12 processing. TUDCA abolished TG-induced markers of ER stress; reduced calcium efflux, induction of Bip/GRP78, and caspase-12 activation; and subsequently inhibited activation of effector caspases and apoptosis. In conclusion, we propose that mitochondria play a secondary role in ER-mediated apoptosis and that TUDCA prevents apoptosis by blocking a calcium-mediated apoptotic pathway as well as caspase-12 activation. This novel mechanism of TUDCA action suggests new intervention methods for ER stress-induced liver disease. [source]


    Clinically reported heterozygous mutations in the PINK1 kinase domain exert a gene dosage effect,

    HUMAN MUTATION, Issue 11 2009
    Eng-King Tan
    Abstract Mutations in the gene encoding phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) have been associated with the loss of dopaminergic neurons characteristic of familial and sporadic Parkinson disease. We developed an in vitro system of stable human dopaminergic neuronal cell lines coexpressing an equivalent copy of normal and mutant PINK1 to simulate "heterozygous" and "homozygous" states in patients. Mutants in the N-terminus, C-terminus, and kinase domain were generated and cloned into a two-gene mammalian expression vector to generate stable mammalian expression cell lines producing an equivalent copy number of wild-type/mutant PINK1. The cell lines were subjected to oxidative stress and the rate of apoptosis and change in mitochondrial membrane potential (,,m) were assessed. Cell lines expressing kinase and C-terminus mutants exhibited a greater rate of apoptosis and decrease in ,,m, and increased time-dependent cell loss when subjected to oxidative stress compared to the wild-type. Cell lines expressing two copies of kinase mutants exhibited a greater apoptosis rate and ,,m decrease than those expressing one copy of the mutant. In time-dependent experiments, there was a significant difference between "homozygous," "heterozygous," and wild-type cell lines, with decreasing cell survival in cell lines expressing mutant copies of PINK1 compared to the wild-type. We provided the first experimental evidence that clinically reported PINK1 heterozygous mutations exert a gene dosage effect, suggesting that haploinsufficiency of PINK1 is the most likely mechanism that increased the susceptibility to dopaminergic cellular loss. Hum Mutat 30:1551,1557, 2009. © 2009 Wiley-Liss, Inc. [source]


    The effect of GHRH antagonists on human glioblastomas and their mechanism of action,

    INTERNATIONAL JOURNAL OF CANCER, Issue 10 2010
    Eva Pozsgai
    Abstract The effects of new growth hormone-releasing hormone (GHRH) antagonists JMR-132 and MIA-602 and their mechanism of action were investigated on 2 human glioblastoma cell lines, DBTRG-05 and U-87MG, in vitro and in vivo. GHRH receptors and their main splice variant, SV1 were found on both cell lines. After treatment with JMR-132 or MIA-602, the cell viability decreased significantly. A major decrease in the levels of phospho-Akt, phospho-GSK3, and phosho-ERK 1/2 was detected at 5 and 10 min following treatment with the GHRH antagonists, whereas elevated levels of phospho-p38 were observed at 24 hr. The expression of caspase-3 and poly(ADP-ribose) (PARP), as the downstream executioners of apoptosis were found to be significantly elevated after treatment. Following treatment of the glioblastoma cells with GHRH antagonists, nuclear translocation of apoptosis inducing factor (AIF) and Endonuclease G (Endo G) and the mitochondrial release of cytochrome c (cyt c) were detected, indicating that the cells were undergoing apoptosis. In cells treated with GHRH antagonists, the collapse of the mitochondrial membrane potential was shown with fluorescence microscopy and JC-1 membrane potential sensitive dye. There were no significant differences between results obtained in DBTRG-05 or U-87MG cell lines. After treatment with MIA-602 and JMR-132, the reduction rate in the growth of DBTRG-05 glioblastoma, xenografted into nude mice, was significant and tumor doubling time was also significantly extended when compared with controls. Our study demonstrates that GHRH antagonists induce apoptosis through key proapoptotic pathways and shows the efficacy of MIA-602 for experimental treatment of glioblastoma. [source]


    Improving cellular function through modulation of energy metabolism

    INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 5 2004
    D. Maes
    The ambivalent consequences of mitochondrial stimulation on cellular activity have been well established. Mitochondria supply the cell with energy through a process of oxidative phosphorylation but thereby generate free radicals, resulting in the accumulation of hydrogen peroxide in the cytoplasm. We have investigated the impact of cellular senescence as well as UV irradiation, on the balance between these two activities. The adenosine triphosphate (ATP) level, DNA and protein synthesis in fibroblasts obtained from donors between 30 and 90 years of age appeared to be significantly influenced by the aging process. Both DNA and protein synthesis could be stimulated by increasing intracellular ATP levels. In-vitro senescent fibroblasts showed a reduction in the level of ATP as well as a shift in mitochondrial membrane potential. At the same time, there was an increase in intracellular hydrogen peroxide with increasing population doubling, indicating a clear dysfunction of the metabolic machinery in the mitochondria of senescent cells. To counteract this degradation of the energy pool, we treated cells with creatine, which is known to restore the pool of phosphocreatine in the mitochondria. Creatine treatment significantly increased cell survival after UV exposure, stimulated the repair of UVB-induced DNA damage in keratinocytes and caused a significant reduction in the number of sunburn cells in a UVB-exposed reconstituted skin model. These results clearly indicate that restoration of the energy pool in mitochondria increased cellular self-defense mechanism. These data show the important role played by the mitochondrial energy metabolism on the aging process, and indicate a possible therapy that can be used to counteract this negative effect. Treatment with creatine seems to provide the necessary boost to the cellular metabolism, which leads to an induction of a significant amount of protection and repair to human skin cells. [source]


    Induction of hepatotoxicity by sanguinarine is associated with oxidation of protein thiols and disturbance of mitochondrial respiration

    JOURNAL OF APPLIED TOXICOLOGY, Issue 8 2008
    Cheuk-Sing Choy
    Abstract Sanguinarine (SANG) has been suggested to be one of the principle constituents responsible for the toxicity of Argemone mexicana seed oil. In this study, we focused on the possible mechanism of SANG-induced hepatotoxicity. The serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) activities, hepatic vacuolization, lipid accumulation and lipid peroxidation of the liver were increased, and triglyceride (TG) was decreased in SANG-treated mice (10 mg kg,1 i.p.), indicating damage to the liver. SANG induced cell death and DNA fragmentation, in a concentration- (0,30 µm) and time-dependent (0,24 h) manner, and the cytotoxicity of SANG (15 µm) was accompanied by an increase in reactive oxygen species and a lessening in protein thiol content; these outcomes were reversed by glutathione, N -acetyl- l -cysteine and 1,4-dithiothretol, and slightly improved by other antioxidants in hepatocytes. SANG can affect the function of mitochondria, leading to the depletion of the mitochondrial membrane potential and adenosine 5,-triphosphate content of hepatocytes. SANG caused an uncoupling effect of the respiratory chain at lower concentrations, but inhibited the respiratory chain at higher concentrations in mitochondria isolated from rat liver. In conclusion, the data suggest that SANG is a liver toxin that induces cytotoxicity in liver cells, possibly through oxidation of protein thiols, resulting in oxidative stress on the cells and disturbance of mitochondrial function. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Sevoflurane and propofol depolarize mitochondria in rat and human cerebrocortical synaptosomes by different mechanisms

    ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 10 2009
    R. BAINS
    Background and objectives: The mitochondrial membrane potential drives the main functions of the mitochondria. Sevoflurane depolarizes neural mitochondria. There is still, however, limited information concerning the effect of anaesthetics on neural mitochondria in humans. The effect of sevoflurane and propofol on the intracellular Ca2+ concentration [Ca2+]i and the mitochondrial membrane potential (,,m) was therefore compared in rat and human synaptosomes, and the changes were related to interventions in the electron transport chain. Methods: Synaptosomes from rat and human cerebral cortex were loaded with the fluorescent probes fura-2 ([Ca2+]i) and JC-1 (,,m) before exposure to sevoflurane 1 and 2 minimum alveolar concentration (MAC), and propofol 30 and 100 ,M. The effect on the electron transport chain was investigated by blocking complex V. Results: Sevoflurane and propofol decreased ,,m in rat synaptosomes in a dose-dependent manner, and to the same extent by equipotent doses. Inhibition of complex V enhanced the depolarizing effect of sevoflurane 2 MAC, but not of propofol 100 ,M. Neither sevoflurane nor propofol affected [Ca2+]i significantly. Sevoflurane and propofol decreased ,,m in human synaptosomes to the same extent as in the rat experiments. Conclusions: Sevoflurane and propofol at equipotent doses depolarize the mitochondria in rat and human nerve terminals to the same extent. The depolarizing effect of propofol on ,m was more rapid in onset than that of sevoflurane. Whereas sevoflurane inhibits the respiratory chain sufficiently to cause ATP synthase reversal, the depolarizing effect of propofol seems to be related to inhibition of the respiratory chain from complex I to V. [source]


    Catechin as an antioxidant in liver mitochondrial toxicity: Inhibition of tamoxifen-Induced protein oxidation and lipid peroxidation,

    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2007
    Heena Tabassum
    Abstract Tamoxifen (TAM) is a nonsteroidal triphenylethylene antiestrogenic drug widely used in the treatment and prevention of breast cancer. TAM brings about a collapse of the mitochondrial membrane potential. It acts both as an uncoupling agent and as a powerful inhibitor of mitochondrial electron transport chain. The effect of catechin pretreatment on the mitochondrial toxicity of TAM was studied in liver mitochondria of Swiss albino mice. TAM treatment caused a significant increase in the mitochondrial lipid peroxidation (LPO) and the protein carbonyls (PCs). It also caused a significant increase in superoxide radical production. Pretreatment of mice with catechin (40 mg/kg) showed significant protection as demonstrated by marked attenuation of increased oxidative stress parameters such LPO, PCs, and superoxide production. It also restored the decreased nonenzymatic and enzymatic antioxidants of mitochondria. The inhibitory effect of catechin on TAM-induced oxidative damage suggests that it may have potential benefits in prevention of human diseases where reactive oxygen species have some role as causative agents. © 2007 Wiley Periodicals, Inc. J Biochem Mol Toxicol 21:110,117, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20167 [source]


    O -acetylation of GD3 prevents its apoptotic effect and promotes survival of lymphoblasts in childhood acute lymphoblastic leukaemia

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2008
    Kankana Mukherjee
    Abstract We have previously demonstrated induction of O -acetylated sialoglycoproteins on lymphoblasts of childhood acute lymphoblastic leukaemia (ALL). These molecules promote survival of lymphoblasts by preventing apoptosis. Although O -acetylated sialoglycoproteins are over expressed, the status of O -acetylation of gangliosides and their role in lymphoblasts survival remains to be explored in ALL patients. Here, we have observed enhanced levels of 9- O -acetylated GD3 (9- O -AcGD3) in the lymphoblasts of patients and leukaemic cell line versus disialoganglioside GD3 in comparison to the normal cells. Localization of GD3 and 9- O -AcGD3 on mitochondria of patient's lymphoblasts has been demonstrated by immuno-electron microscopy. The exogenous administration of GD3-induced apoptosis in lymphoblasts as evident from the nuclear fragmentation and sub G0/G1 apoptotic peak. In contrast, 9- O -AcGD3 failed to induce such apoptosis. We further explored the mitochondria-dependent pathway triggered during GD3-induced apoptosis in lymphoblasts. GD3 caused a time-dependent depolarization of mitochondrial membrane potential, release of cytochrome c and 7.4- and 8-fold increased in caspase 9 and caspase 3 activity respectively. However, under identical conditions, an equimolar concentration of 9- O -AcGD3 failed to induce similar effects. Interestingly, 9- O -AcGD3 protected the lymphoblasts from GD3-induced apoptosis when administered in equimolar concentrations simultaneously. In situ de- O -acetylation of 9- O -AcGD3 with sodium salicylate restores the GD3-responsiveness to apoptotic signals. Although both GD3 and 9- O -acetyl GD3 localize to mitochondria, these two structurally related molecules may play different roles in ALL-disease biology. Taken together, our results suggest that O -acetylation of GD3, like that of O -acetylated sialoglycoproteins, might be a general strategy adopted by leukaemic blasts towards survival in ALL. J. Cell. Biochem. 105: 724,734, 2008. © 2008 Wiley-Liss, Inc. [source]


    c-Jun NH2 -terminal kinase (JNK)-dependent nuclear translocation of apoptosis-inducing factor (AIF) following engagement of membrane immunoglobulin on WEHI-231 B lymphoma cells

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2008
    Eiko Takada
    Abstract WEHI-231 B lymphoma cells have been employed for analysis of antigen-induced B cell unresponsiveness because these cells undergo cell cycle arrest in G1, accompanied by induction of apoptosis. In the present study, we examined the requirement for toxic small molecules apoptosis-inducing factor (AIF) and cytochrome c, and subsequent caspase activation in apoptotic cell death in WEHI-231 and CH31 B lymphoma cells following engagement of membrane immunoglobulin (mIg). Pan-caspase inhibitor BD-fmk blocked mIg-mediated increase in cells with sub-G1 DNA content, whereas it did not affect mIg-mediated loss of mitochondrial membrane potential and phosphatidylserine exposure on B cell membrane. Dominant-negative form of c-Jun NH2 -terminal kinase1 (JNK1) blocked the translocation of AIF into the nuclei and cytosol from the mitochondria in the WEHI-231 and CH31 cells following mIg engagement, whereas constitutively active form of JNK1 enhanced it. This AIF translocation was also blocked by Bcl-xL, but not by BD-fmk. Moreover, AIF-deficient clones via small interfering RNA (siRNA)-mediated method showed small increase in loss of mitochondrial membrane potential. After mIg engagement, the AIF-deficient clones displayed an enhanced sensitivity to mIg-mediated apoptosis, concomitant with translocation of a residual AIF into the nuclei, compared with control clone. Our findings are compatible with the notion that AIF has dual role, with a proapoptotic function in the nuclei and a distinct anti-apoptotic function in the mitochondria. These observations would be valuable for analysis of B cell unresponsiveness and hopefully for treatment of diseases involving B cell dysfunction. J. Cell. Biochem. 104: 1927,1936, 2008. © 2008 Wiley-Liss, Inc. [source]


    2-(4-methylphenyl)-1,3-selenazol-4-one induces apoptosis by different mechanisms in SKOV3 and HL 60 cells

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2006
    Hak Jun Ahn
    Abstract We examined the ability of the synthetic selenium compound, 2-(4-methylphenyl)-1,3-selenazol-4-one (hereafter designated 3a), to induce apoptosis in a human ovarian cancer cell line (SKOV3) and a human leukemia cell line (HL-60). Flow cytometry showed that 3a treatment induced apoptosis in both cell lines to degrees comparable to that of the positive control, paclitaxel. Apoptosis was measured by PS externalization, DNA fragmentation and decreased mitochondrial membrane potential (MMP). However, analysis of the mechanism of action revealed differences between the responses of the two cell lines. Treatment with 3a arrested the cell cycle and induced caspase-3 activation in HL-60 cells, but not in SKOV3 cells. In contrast, 3a treatment induced apoptosis through translocation of AIF, a novel pro-apoptotic protein, in SKOV3 cells, but not in HL-60 cells. Collectively, our data demonstrated that 3a induced apoptosis in both cell lines, but via different action mechanisms. J. Cell. Biochem. 99: 807,815, 2006. © 2006 Wiley-Liss, Inc. [source]


    Cepharanthine activates caspases and induces apoptosis in Jurkat and K562 human leukemia cell lines

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2001
    Jianghong Wu
    Abstract Cepharanthine (CEP) is a known membrane stabilizer that has been widely used in Japan for the treatment of several disorders such as anticancer therapy-provoked leukopenia. We here report that apoptosis was induced by low concentrations (1,5 ,M) of CEP in a human leukemia T cell line, Jurkat, and by slightly higher concentrations (5,10 ,M) in a human chronic myelogenous leukemia (CML) cell line K562, which expresses a p210 antiapoptotic Bcr-Abl fusion protein. Induction of apoptosis was confirmed in both Jurkat and K562 cells by DNA fragmentation and typical apoptotic nuclear change, which were preceded by disruption of mitochondrial membrane potential and were induced through a Fas-independent pathway. CEP treatment induced activation of caspase-9 and -3 accompanied by cleavage of PARP, Bid, lamin B1, and DFF45/ICAD in both Jurkat and K562 cells, whereas caspase-8 activation and Akt cleavage were observed only in Jurkat cells. The CEP-induced apoptosis was completely blocked by zVAD-fmk, a broad caspase inhibitor. Interestingly, CEP treatment induced remarkable degradation of the Bcr-Abl protein in K562 cells, and this degradation was prevented partially by zVAD-fmk. When used in combination with a nontoxic concentration of herbimycin A, lower concentrations (2,5 ,M) of CEP induced obvious apoptosis in K562 cells with rapid degradation or decrease in the amount of Bcr-Abl and Akt proteins. Our results suggest that CEP, which does not have bone marrow toxicity, may possess therapeutic potential against human leukemias, including CML, which is resistant to anticancer drugs and radiotherapy. J. Cell. Biochem. 82: 200,214, 2001. © 2001 Wiley-Liss, Inc. [source]


    Heme oxygenase-1 gene transfer inhibits angiotensin II-mediated rat cardiac myocyte apoptosis but not hypertrophy,

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2006
    Roger S.Y. Foo
    Cardiac myocyte apoptosis underlies the pathophysiology of cardiomyopathy, and plays a critical role in the transition from myocardial hypertrophy to heart failure. Angiotensin II (Ang II) induces cardiac myocyte apoptosis and hypertrophy which contribute to heart failure possibly through enhanced oxidative stress; however, the mechanisms underlying the activation of both pathways and their interactions remain unclear. In the present study, we have investigated whether overexpression of the antioxidant protein heme oxygenase-1 (HO-1) protects against apoptosis and hypertrophy in cultured rat cardiac myocytes treated with Ang II. Our findings demonstrate that Ang II (100 nM, 24 h) alone upregulates HO-1 expression and induces both myocyte hypertrophy and apoptosis, assessed by measuring terminal deoxynucleotidyltransferase dUTP nick-end labelling (TUNEL) staining, caspase-3 activity and mitochondrial membrane potential. Ang II elicited apoptosis was augmented in the presence of tin protoporphyrin, an inhibitor of HO activity, while HO-1 gene transfer to myocytes attenuated Ang II-mediated apoptosis but not hypertrophy. Adenoviral overexpression of HO-1 was accompanied by a significant increase in Ang II induced phosphorylation of Akt, however, Ang II-mediated p38 mitogen activated protein kinase (MAPK) phosphorylation was attenuated. Inhibition of phosphotidylinositol-3-kinase enhanced myocyte apoptosis elicited by Ang II, however, p38MAPK inhibition had no effect, suggesting that overexpression of HO-1 protects myocytes via augmented Akt activation and not through modulation of p38MAPK activation. Our findings identify the signalling pathways by which HO-1 gene transfer protects against apoptosis and suggest that overexpression of HO-1 in cardiomyopathies may delay the transition from myocyte hypertrophy to heart failure. J. Cell. Physiol. 209: 1,7, 2006. © 2006 Wiley-Liss, Inc. [source]