Metastatic Cell Line (metastatic + cell_line)

Distribution by Scientific Domains


Selected Abstracts


Effect of ketoprofen in topical formulation on vascular endothelial growth factor expression and tumor growth in nude mice with osteosarcoma

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2004
Kenshi Sakayama
Abstract OST cells, a low metastatic cell line established from human osteosarcoma, were inoculated under the periosteum of the ossa cranii of nude mice. Four weeks later, tumors were percutaneously treated for an additional 4 weeks with a patch containing either placebo or ketoprofen (KP). In the placebo group, OST cells formed osteoid and invaded the cranial bone. Tumor mass weighed 3.54 g. Approximately 85% of cells within the tumor expressed proliferating cell nuclear antigen (PCNA), indicating that they were proliferating with a high mitotic activity. Many feeder vessels were located within the tumor. The majority of tumor cells expressed intensely vascular endothelial growth factor (VEGF). In the KP group, invasion of OST cells into the cranial bone was suppressed and the tumor mass was 47% of that of the placebo group. Approximately 65% of cells within the tumor were PCNA-negative, indicating that their growth was arrested. There were considerably fewer feeder vessels within the tumor in the KP group than in the placebo group. Only a small number of cells expressed VEGF. Based on these findings, we concluded that topical administration of KP to nude mice with osteosarcoma inhibited VEGF expression, reduced the development of feeder vessels for supply of nutrients and oxygen, and suppressed tumor growth. © 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source]


Synergistic inhibitory effect of sulforaphane and 5-fluorouracil in high and low metastasis cell lines of salivary gland adenoid cystic carcinoma

PHYTOTHERAPY RESEARCH, Issue 3 2009
Xiao-Feng Wang
Abstract The present study aimed to evaluate the growth-inhibitory effect of sulforaphane (SFN) and a traditional chemotherapy agent, 5-fluorouracil (5-Fu), against the proliferation of salivary gland adenoid cystic carcinoma high metastatic cell line (ACC-M) and low metastasis cell line (ACC-2). Furthermore, the expression of nuclear factor kappa B (NF- ,B) which induces resistance to anticancer chemotherapeutic agents was also detected. The combination effect of SFN and 5-Fu was quantitatively determined using the method of median effect principle and the combination index. The nuclear NF- ,B p65 expression after treatment with the SFN-5-Fu combination was also evaluated by western blot analysis. The ACC-M and ACC-2 cells exhibited relative resistant to 5-Fu. Treatment ACCs cells with SFN and 5-Fu in combination, led to synergistic inhibition on cell growth and a decreased expression in nuclear NF- ,B p65 protein. This synergistic inhibitory effect was more significant in ACC-M cells, which is associated with the greatly decreased expression of NF- ,B p65 (almost 5-fold) after the combination treatment. Our results demonstrate synergism between SFN and 5-Fu at higher doses against the ACC-M and ACC-2 cells, which was associated with the decreased expression of nuclear NF- ,B p65 protein. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Cadherin-7 interacts with melanoma inhibitory activity protein and negatively modulates melanoma cell migration

CANCER SCIENCE, Issue 2 2009
Andreas Winklmeier
Melanoma inhibitory activity (MIA) has been identified as a small protein secreted from malignant melanoma cells, which strongly enhances melanoma cell migration and invasion. Detailed analyses performed by our group showed interaction of MIA with extracellular matrix proteins and integrin ,4,1 and ,5,1 leading to cellular detachment. In this study, we identified cadherin-7 as a new MIA-binding protein using surface-enhanced laser desorption/ionization-mass spectrometry technology and co-immunoprecipitation. Cadherin-7 is a classical cell,cell adhesion molecule which was shown to be upregulated in malignant melanoma. We demonstrated enhanced expression of cadherin-7 in primary tumor cells compared to metastatic cells. Upregulation of cadherin-7 expression in metastatic cell lines but also downregulation of expression in cells derived from primary melanomas resulted in reduced cell migration. In addition, we speculate that MIA/cadherin-7 interaction may regulate cell,cell adhesion of malignant melanoma cells influencing the migration of the cells. Interestingly, overexpression of cadherin-7 resulted in a decreased MIA mRNA expression. In addition, MIA effects on cell migration were abrogated in cell clones overexpressing cadherin-7. In conclusion, these findings suggest that cadherin-7 regulates the expression and activity of MIA and the migration of melanoma cells playing a role in tumor development of malignant melanoma. (Cancer Sci 2009; 100: 261,268) [source]


Establishment of an ovarian metastasis model and possible involvement of E-cadherin down-regulation in the metastasis

CANCER SCIENCE, Issue 10 2008
Yoshiko Kuwabara
Clinical observations of cases of ovarian metastasis suggest that there may be a unique mechanism underlying ovarian-specific metastasis. This study was undertaken to establish an in vivo model of metastasis to the ovary, and to investigate the mechanism of ovarian-specific metastasis. We examined the capacity for ovarian metastasis in eight different human carcinoma cell lines by implantation in female NOD/SCID mice transvenously and intraperitoneally. By transvenous inoculation, only RERF-LC-AI, a poorly differentiated carcinoma cell line, frequently demonstrated ovarian metastasis. By intraperitoneal inoculation, four of the eight cell lines (HGC27, MKN-45, KATO-III, and RERF-LC-AI) metastasized to the ovary. We compared E-cadherin expression among ovarian metastatic cell lines and others. All of these four ovarian metastatic cell lines and HSKTC, a Krukenberg tumor cell line, showed E-cadherin down-regulation and others did not. E-cadherin was then forcibly expressed in RERF-LC-AI, and inhibited ovarian metastasis completely. The capacity for metastasizing to the other organs was not affected by E-cadherin expression. We also performed histological investigation of clinical ovarian-metastatic tumor cases. About half of all ovarian-metastatic tumor cases showed loss or reduction of E-cadherin expression. These data suggest that E-cadherin down-regulation may be involved in ovarian-specific metastasis. (Cancer Sci 2008; 99: 1933,1939) [source]