Metastasis Model (metastasis + model)

Distribution by Scientific Domains


Selected Abstracts


Early Detection of Bone Metastases in a Murine Model Using Fluorescent Human Breast Cancer Cells: Application to the Use of the Bisphosphonate Zoledronic Acid in the Treatment of Osteolytic Lesions

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2001
Olivier Peyruchaud
Abstract A very common metastatic site for human breast cancer is bone. The traditional bone metastasis model requires human MDA-MB-231 breast carcinoma cell inoculation into the left heart ventricle of nude mice. MDA-MB-231 cells usually develop osteolytic lesions 3,4 weeks after intracardiac inoculation in these animals. Here, we report a new approach to study the formation of bone metastasis in animals using breast carcinoma cells expressing the bioluminescent jellyfish protein (green fluorescent protein [GFP]). We first established a subclone of MDA-MB-231 cells by repeated in vivo passages in bone using the heart injection model. On stable transfection of this subclone with an expression vector for GFP and subsequent inoculation of GFP-expressing tumor cells (B02/GFP.2) in the mouse tail vein, B02/GFP.2 cells displayed a unique predilection for dissemination to bone. Externally fluorescence imaging of live animals allowed the detection of fluorescent bone metastases approximately 1 week before the occurrence of radiologically distinctive osteolytic lesions. The number, size, and intensity of fluorescent bone metastases increased progressively with time and was indicative of breast cancer cell progression within bone. Histological examination of fluorescent long bones from B02/GFP.2-bearing mice revealed the occurrence of profound bone destruction. Treatment of B02/GFP.2-bearing mice with the bisphosphonate zoledronic acid markedly inhibited the progression of established osteolytic lesions and the expansion of breast cancer cells within bone. Overall, this new bone metastasis model of breast cancer combining both fluorescence imaging and radiography should provide an invaluable tool to study the effectiveness of pharmaceutical agents that could suppress cancer colonization in bone. [source]


The sodium pump ,1 sub-unit: a disease progression,related target for metastatic melanoma treatment

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009
Véronique Mathieu
Abstract Melanomas remain associated with dismal prognosis because they are naturally resistant to apoptosis and they markedly metastasize. Up-regulated expression of sodium pump , sub-units has previously been demonstrated when comparing metastatic to non-metastatic melanomas. Our previous data revealed that impairing sodium pump ,1 activity by means of selective ligands, that are cardiotonic steroids, markedly impairs cell migration and kills apoptosis-resistant cancer cells. The objective of this study was to determine the expression levels of sodium pump , sub-units in melanoma clinical samples and cell lines and also to characterize the role of ,1 sub-units in melanoma cell biology. Quantitative RT-PCR, Western blotting and immunohistochemistry were used to determine the expression levels of sodium pump , sub-units. In vitro cytotoxicity of various cardenolides and of an anti-,1 siRNA was evaluated by means of MTT assay, quantitative videomicroscopy and through apoptosis assays. The in vivo activity of a novel cardenolide UNBS1450 was evaluated in a melanoma brain metastasis model. Our data show that all investigated human melanoma cell lines expressed high levels of the ,1 sub-unit, and 33% of human melanomas displayed significant ,1 sub-unit expression in correlation with the Breslow index. Furthermore, cardenolides (notably UNBS1450; currently in Phase I clinical trials) displayed marked anti-tumour effects against melanomas in vitro. This activity was closely paralleled by decreases in cMyc expression and by increases in apoptotic features. UNBS1450 also displayed marked anti-tumour activity in the aggressive human metastatic brain melanoma model in vivo. The ,1 sodium pump sub-unit could represent a potential novel target for combating melanoma. [source]


Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 3 2006
V. TERRAUBE
Summary.,Background:,The key role played by von Willebrand factor (VWF) in platelet adhesion suggests a potential implication in various pathologies, where this process is involved. In cancer metastasis development, tumor cells interact with platelets and the vessel wall to extravasate from the circulation. As a potential mediator of platelet,tumor cell interactions, VWF could influence this early step of tumor spread and therefore play a role in cancer metastasis.Objectives:,To investigate whether VWF is involved in metastasis development.Methods:,In a first step, we characterized the interaction between murine melanoma cells B16-BL6 and VWF in vitro. In a second step, an experimental metastasis model was used to compare the formation of pulmonary metastatic foci in C57BL/6 wild-type and VWF-null mice following the injection of B16-BL6 cells or Lewis lung carcinoma cells.Results:,In vitro adhesion assays revealed that VWF is able to promote a dose-dependent adhesion of B16-BL6 cells via its Arg-Gly-Asp (RGD) sequence. In the experimental metastasis model, we found a significant increase in the number of pulmonary metastatic foci in VWF-null mice compared with the wild-type mice, a phenotype that could be corrected by restoring VWF plasma levels. We also showed that increased survival of the tumor cells in the lungs during the first 24 h in the absence of VWF was the cause of this increased metastasis.Conclusion:,These findings suggest that VWF plays a protective role against tumor cell dissemination in vivo. Underlying mechanisms remain to be investigated. [source]


Histochemical evidence of osteoclastic degradation of extracellular matrix in osteolytic metastasis originating from human lung small carcinoma (SBC-5) cells

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 2 2006
Minqi Li
Abstract The aim of this study was to assess the dynamics of osteoclast migration and the degradation of unmineralized extracellular matrix in an osteolytic metastasis by examining a well-standardized lung cancer metastasis model of nude mice. SBC-5 human lung small carcinoma cells were injected into the left cardiac ventricle of 6-week-old BALB/c nu/nu mice under anesthesia. At 25,30 days after injection, the animals were sacrificed and their femora and/or tibiae were removed for histochemical analyses. Metastatic lesions were shown to occupy a considerable area extending from the metaphyses to the bone marrow region. Tartrate resistant acid phosphatase (TRAPase)-positive osteoclasts were found in association with an alkaline phosphatase (ALPase)-positive osteoblastic layer lining the bone surface, but could also be localized in the ALPase-negative stromal tissues that border the tumor nodules. These stromal tissues were markedly positive for osteopontin, and contained a significant number of TRAPase-positive osteoclasts expressing immunoreactivity for CD44. We thus speculated that, mediating its affinity for CD44, osteopontin may serve to facilitate osteoclastic migration after their formation associated with ALPase-positive osteoblasts. We next examined the localization of cathepsin K and matrix metallo-proteinase-9 (MMP-9) in osteoclasts. Osteoclasts adjacent to the bone surfaces were positive for both proteins, whereas those in the stromal tissues in the tumor nests showed only MMP-9 immunoreactivity. Immunoelectron microscopy disclosed the presence of MMP-9 in the Golgi apparatus and in vesicular structures at the baso-lateral cytoplasmic region of the osteoclasts found in the stromal tissue. MMP-9-positive vesicular structures also contained fragmented extracellular materials. Thus, osteoclasts appear to either select an optimized function, namely secreting proteolytic enzymes from ruffled borders during bone resorption, or recognize the surrounding extracellular matrix by mediating osteopontin/CD44 interaction, and internalize the extracellular matrices. Microsc. Res. Tech. 69:73,83, 2006. © 2006 Wiley-Liss, Inc. [source]


A double three-step theory of brain metastasis in mice: the role of the pia mater and matrix metalloproteinases

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 3 2007
N. Saito
The brain is frequently affected by the spread of lung cancer, and haematogenous metastasis is a common route to brain metastasis. We therefore developed an isogenic brain metastasis model of lung cancer to use the Lewis lung carcinoma cell line and analysed dynamics of neoplastic cells after extravasation. Histological analysis revealed two characteristic patterns: metastatic foci exhibiting an angiocentric pattern were designated ,perivascular proliferations'; neoplastic cells infiltrating the brain parenchyma were designated ,invasive proliferations'. Electron microscopic observation of perivascular proliferations showed that neoplastic cells were confined to the perivascular space. In invasive proliferations, however, fragments of collagen fibre were observed in the gaps between neoplastic cells, indicating that the neoplastic cells had disintegrated the pia-glial membrane. We analysed the expressions of matrix metalloproteinase-2 (MMP-2) and MMP-9 by using both immunohistochemical analysis and real-time polymerase chain reaction analysis. MMP-2 expression was significantly higher in invasive proliferations. MMP-9 expression was significantly higher in day 7, but there was no significant difference in day 11. The pia-glial membrane and perivascular space are the barriers that neoplastic cells must overcome to infiltrate the brain. In conclusion, our findings suggest that brain metastasis requires two distinct processes. [source]


Inhibitory effect of magnolol on tumour metastasis in mice

PHYTOTHERAPY RESEARCH, Issue 8 2003
Koji Ikeda
Abstract It has previously been reported that magnolol, a phenolic compound isolated from Magnolia obovata, inhibited tumour cell invasion in vitro. The purpose of this study was to investigate the antimetastatic effect of magnolol on tumour metastasis in vivo with experimental and spontaneous metastasis models and to clarify the mechanism. The antimetastatic effects of magnolol were evaluated by an experimental liver and spleen metastasis model using L5178Y-ML25 lymphoma, or an experimental and spontaneous lung metastasis model using B16-BL6 melanoma. Intraperitoneal (i.p.) administration of 2 or 10 mg/kg of magnolol signi,cantly suppressed liver and spleen metastasis or lung metastasis. As for the spontaneous lung metastasis model using B16-BL6 melanoma, multiple i.p. administrations of 10 mg/kg of magnolol after and before tumour inoculation signi,cantly suppressed lung metastasis and primary tumour growth. In addition, magnolol signi,cantly inhibited B16-BL6 cell invasion of the reconstituted basement membrane (Matrigel, MG) without affecting cell growth. These data from the in vivo experiments suggest that magnolol possesses strong antimetastatic ability and that it may be a lead compound for drug development. The antimetastatic action of magnolol is considered to be due to its ability to inhibit tumour cell invasion. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Establishment of an ovarian metastasis model and possible involvement of E-cadherin down-regulation in the metastasis

CANCER SCIENCE, Issue 10 2008
Yoshiko Kuwabara
Clinical observations of cases of ovarian metastasis suggest that there may be a unique mechanism underlying ovarian-specific metastasis. This study was undertaken to establish an in vivo model of metastasis to the ovary, and to investigate the mechanism of ovarian-specific metastasis. We examined the capacity for ovarian metastasis in eight different human carcinoma cell lines by implantation in female NOD/SCID mice transvenously and intraperitoneally. By transvenous inoculation, only RERF-LC-AI, a poorly differentiated carcinoma cell line, frequently demonstrated ovarian metastasis. By intraperitoneal inoculation, four of the eight cell lines (HGC27, MKN-45, KATO-III, and RERF-LC-AI) metastasized to the ovary. We compared E-cadherin expression among ovarian metastatic cell lines and others. All of these four ovarian metastatic cell lines and HSKTC, a Krukenberg tumor cell line, showed E-cadherin down-regulation and others did not. E-cadherin was then forcibly expressed in RERF-LC-AI, and inhibited ovarian metastasis completely. The capacity for metastasizing to the other organs was not affected by E-cadherin expression. We also performed histological investigation of clinical ovarian-metastatic tumor cases. About half of all ovarian-metastatic tumor cases showed loss or reduction of E-cadherin expression. These data suggest that E-cadherin down-regulation may be involved in ovarian-specific metastasis. (Cancer Sci 2008; 99: 1933,1939) [source]


DE-310, a novel macromolecular carrier system for the camptothecin analog DX-8951f: Potent antitumor activities in various murine tumor models

CANCER SCIENCE, Issue 2 2004
Eiji Kumazawa
DE-310 is a novel macromolecular conjugate composed of DX-8951f, a camptothecin analog, and a carboxymethyldextran polyalcohol carrier, which are covalently linked via a peptidyl spacer. In a murine Meth A (fibrosarcoma) solid tumor model, once daily×5 treatments (qd×5) with DX-8951f at the maximum tolerated dose (MTD) were required to shrink the tumor, and DX-8951f (qd×5) at 1/4 MTD was required to inhibit tumor growth. A single treatment (qd×1) with DE-310 at the MTD or 1/4 MTD shrank the tumor, with no body weight loss occurring at 1/4 MTD. Even at 1/16 MTD, DE-310 inhibited tumor growth. In a long-term assay, Meth A solid tumors disappeared in mice treated with DE-310 (qd×1) at the MTD and 1/2 MTD, and all 6 mice remained tumor-free on the 60th day after administration. Repeated injection (4 times) on schedules of every 3 days, 7 days or 14 days demonstrated that multiple treatment with DE-310 produced greater tumor growth delay than a single treatment with DE-310. Against 5 human tumor (colon and lung cancer) xenografts in mice, DE-310 (qd×1) was as effective as DX-8951f administered once every 4 days, 4 times. The life-prolonging activity of DE-310 was assessed in lung (3LL, Lewis lung carcinoma) and liver (M5076, histiocytoma) metastasis models. Against 3LL, DE-310 (qdx1) at the MTD to 1/3 MTD significantly prolonged survival, with an increase in life span (ILS) of 4.8- to 1.6-fold, respectively, over that in untreated control mice. Also, DE-310 (qd×1) significantly prolonged survival in the liver metastasis model of M5076. These results demonstrate that DE-310 is a promising agent for the treatment of cancer. [source]


DJ-927, a novel oral taxane, overcomes P-glycoprotein-mediated multidrug resistance in vitro and in vivo

CANCER SCIENCE, Issue 5 2003
Motoko Shionoya
DJ-927 is a novel taxane, which was selected for high solubility, non-neurotoxicity, oral bioavailability, and potent antitumor activity. In this study, we compared the in vitro and in vivo efficacy of DJ-927 with those of paclitaxel and docetaxel. DJ-927 exhibited stronger cytotoxicity than paclitaxel and docetaxel in various tumor cell lines, especially against P-glycoprotein (P-gp)-expressing cells. The cytotoxicity of DJ-927, unlike those of other taxanes, was not affected by the P-gp expression level in tumor cells, or by the co-presence of a P-gp modulator. When intracellular accumulation of the three compounds was compared, intracellular amounts of DJ-927 were much higher than those of paclitaxel or docetaxel, particularly in P-gp-positive cells. In vivo, DJ-927 showed potent antitumor effects against two human solid tumors in male BALB/c- nu/nu mice, and yielded significant life-prolongation in a murine liver metastasis model with male C57BL/6 mice, in which neither paclitaxel nor docetaxel was effective. The results demonstrate the superior efficacy of orally administered DJ-927 over intravenously administered paclitaxel or docetaxel against P-gp-expressing tumors, probably due to higher intracellular accumulation. A phase I clinical trials of DJ-927 is currently ongoing in the US. (Cancer Sci 2003; 94: 459,466) [source]