Metamorphism

Distribution by Scientific Domains

Kinds of Metamorphism

  • amphibolite facy metamorphism
  • contact metamorphism
  • eclogite facy metamorphism
  • facy metamorphism
  • high-grade metamorphism
  • peak metamorphism
  • prograde metamorphism
  • regional metamorphism
  • retrograde metamorphism
  • thermal metamorphism
  • uhp metamorphism
  • ultrahigh-pressure metamorphism


  • Selected Abstracts


    Metamorphic and cooling history of the Shimanto accretionary complex, Kyushu, Southwest Japan: Implications for the timing of out-of-sequence thrusting

    ISLAND ARC, Issue 4 2008
    Hidetoshi Hara
    Abstract Illite crystallinity, K,Ar dating of illite, and fission-track dating of zircon are analyzed in the hanging wall (Sampodake unit) and footwall (Mikado unit) of a seismogenic out-of-sequence thrust (Nobeoka thrust) within the Shimanto accretionary complex of central Kyushu, southwest Japan. The obtained metamorphic temperatures, and timing of metamorphism and cooling, reveal the tectono-metamorphic evolution of the complex, and related development of the Nobeoka thrust. Illite crystallinity data indicate that the Late Cretaceous Sampodake unit was metamorphosed at temperatures of around 300 to 310C, while the Middle Eocene Mikado unit was metamorphosed at 260 to 300C. Illite K,Ar ages and zircon fission-track ages constrain the timing of metamorphism of the Sampodake unit to the early Middle Eocene (46 to 50 Ma, mean = 48 Ma). Metamorphism of the Mikado unit occurred no earlier than 40 Ma, which is the youngest depositional age of the unit. The Nobeoka thrust is inferred to have been active during about 40 to 48 Ma, as the Sampodake unit started its post metamorphic cooling after 48 Ma and was thrust over the Mikado unit at about 40 Ma along the Nobeoka thrust. These results indicate that the Nobeoka thrust was active for more than 10 million years. [source]


    Metamorphism and metamorphic K,Ar ages of the Mesozoic accretionary complex in Northland, New Zealand

    ISLAND ARC, Issue 3 2004
    Yujiro Nishimura
    Abstract A southwest dipping Mesozoic accretionary complex, which consists of tectonically imbricated turbiditic mudstone and sandstone, hemipelagic siliceous mudstone, and bedded cherts and basaltic rocks of pelagic origin, is exposed in northern North Island, New Zealand. Interpillow limestone is sometimes contained in the basaltic rocks. The grade of subduction-related metamorphism increases from northeast to southwest, indicating an inverted metamorphic gradient dip. Three metamorphic facies are recognized largely on the basis of mineral parageneses in sedimentary and basaltic rocks: zeolite, prehnite-pumpellyite and pumpellyite-actinolite. From the apparent interplanar spacing d002 data for carbonaceous material, which range from 3.642 to 3.564 , the highest grade of metamorphism is considered to have attained only the lowermost grade of the pumpellyite-actinolite facies for which the highest temperature may be approximately 300C. Metamorphic white mica K,Ar ages are reported for magnetic separates and <2 m hydraulic elutriation separates from 27 pelitic and semipelitic samples. The age data obtained from elutriation separates are approximately 8 m.y. younger, on average, than those from magnetic separates. The age difference is attributed to the possible admixture of nonequilibrated detrital white mica in the magnetic separates, and the age of the elutriation separates is considered to be the age of metamorphism. If the concept, based on fossil evidence, of the subdivision of the Northland accretionary complex into north and south units is accepted, then the peak age of metamorphism in the north unit is likely to be 180,130 Ma; that is, earliest Middle Jurassic to early Early Cretaceous, whereas that in the south unit is 150,130 Ma; that is, late Late Jurassic to early Early Cretaceous. The age cluster for the north unit correlates with that of the Chrystalls Beach,Taieri Mouth section (uncertain terrane), while the age cluster for the south unit is older than that of the Younger Torlesse Subterrane in the Wellington area, and may be comparable with that of the Nelson and Marlborough areas (Caples and Waipapa terranes). [source]


    Metamorphism and microstructures along a high-temperature metamorphic field gradient: the north,eastern boundary of the Krlovsk hvozd unit (Bohemian Massif, Czech Republic)

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2002
    D. Scheuvens
    Abstract A metamorphic field gradient has been investigated in the Moldanubian zone of the central European Variscides encompassing, from base to the top, a staurolite,kyanite zone, a muscovite,sillimanite zone, a K-feldspar,sillimanite zone, and a K-feldspar,cordierite zone, respectively. The observed reaction textures in the anatectic metapsammopelites of the higher grade zones are fully compatible with experimental data and petrogenetic grids that are based on fluid-absent melting reactions. From structural and microstructural observations it can be concluded that the boundary between the kyanite,staurolite zone and the muscovite- and K-feldspar,sillimanite zones coincides with an important switch in deformation mechanism(s). Besides minor syn-anatectic shearing (melt-enhanced deformation), microstructural criteria point (a) to a switch in deformation mechanism from rotation recrystallization (climb-accommodated dislocation creep) to prism slip and high-temperature (fast) grain boundary migration in quartz (b) to the activity of diffusion creep in quartz,feldspar layers, and (c) to accommodation of strain by intense shearing in fibrolite,biotite layers. It is suggested that any combination of these deformation mechanisms will profoundly affect the rheological characteristics of high-grade metamorphic rocks and significantly lower rock strength. Hence, the boundary between these zones marks a major rheological barrier in the investigated cross section and probably also in other low- to medium-pressure/high-temperature areas. At still higher metamorphic grades (K-feldspar-cordierite zone), where the rheologically critical melt percentage is reached, rock rheology is mainly governed by the melt and other deformation mechanisms are of minor importance. In the study area, the switch in deformation mechanism(s) is responsible for large-scale strain partitioning and concentration of deformation within the higher-temperature hanging wall during top-to-the-S thrusting, thus preserving a more complete petrostructural record within the rocks of the footwall including indications for a ?Devonian high- to medium-pressure/medium-temperature metamorphic event. Thrusting is accompanied by diapiric ascent of diatexites of the K-feldspar-cordierite zone and infolding of the footwall, suggesting local crustal overturn in this part of the Moldanubian zone. [source]


    A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB-Winonaite parent body

    METEORITICS & PLANETARY SCIENCE, Issue 6 2000
    G. K. BENEDIX
    These meteorites contain inclusions that fall broadly into five types: (1) sulfide-rich, composed primarily of troilite and containing abundant embedded silicates; (2) nonchondritic, silicate-rich, comprised of basaltic, troctolitic, and peridotitic mineralogies; (3) angular, chondritic silicate-rich, the most common type, with approximately chondritic mineralogy and most closely resembling the winonaites in composition and texture; (4) rounded, often graphite-rich assemblages that sometimes contain silicates; and (5) phosphate-bearing inclusions with phosphates generally found in contact with the metallic host. Similarities in mineralogy and mineral and O-isotopic compositions suggest that IAB iron and winonaite meteorites are from the same parent body. We propose a hypothesis for the origin of IAB iron meteorites that combines some aspects of previous formation models for these meteorites. We suggest that the precursor parent body was chondritic, although unlike any known chondrite group. Metamorphism, partial melting, and incomplete differentiation (i.e., incomplete separation of melt from residue) produced metallic, sulfide-rich and silicate partial melts (portions of which may have crystallized prior to the mixing event), as well as metamorphosed chondritic materials and residues. Catastrophic impact breakup and reassembly of the debris while near the peak temperature mixed materials from various depths into the re-accreted parent body. Thus, molten metal from depth was mixed with near-surface silicate rock, resulting in the formation of silicate-rich IAB iron and winonaite meteorites. Results of smoothed particle hydrodynamic model calculations support the feasibility of such a mixing mechanism. Not all of the metal melt bodies were mixed with silicate materials during this impact and reaccretion event, and these are now represented by silicate-free IAB iron meteorites. Ages of silicate inclusions and winonaites of 4.40-4.54 Ga indicate this entire process occurred early in solar system history. [source]


    FIAs (Foliation Intersection/Inflection Axes) Preserved in Porphyroblasts, the DNA of Deformation: A Solution to the Puzzle of Deformation and Metamorphism in the Colorado, Rocky Mountains, USA

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2009
    Afroz Ahmad SHAH
    Abstract: FIAs have been used extensively for more than a decade to unravel deformation and metamorphic puzzles. Orogenic processes developing early during the history or orogenesis challenge scientists because compositional layering in rocks always reactivates where multiple deformations have occurred, leaving little evidence of the history of foliation development preserved in the matrix. The foothills of the Rocky Mountains in Colorado, USA contain a succession of four FIA sets (trends) that would not have been distinguishable if porphyroblasts had not grown during the multiple deformation events that affected these rocks or if they had rotated as these events took place. They reveal that both the partitioning of deformation and the location of isograds changed significantly as the deformation proceeded. [source]


    Eclogites of the Dabie Region: Retrograde Metamorphism and Fluid Evolution

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2002
    GU Lianxing
    Abstract, Based upon fluid effects, retrograde metamorphism of eclogites in the Dabie region can be divided into the fluid-poor, fluid-bearing and fluid-rich stages. The fluid-poor stage is marked by polymorphic inversion, recrystallization and exsolution of solid solutions, and is thought to represent eclogite-facies retrograde environments. The fluid-bearing stage is likely to have occurred at the late stage of ecologite-facies diaphthorosis and is represented by kyanite porphyroblasts, rutile, and sodic pyroxene in association with high-pressure hydrous minerals such as phengite and zoisite (clinozoisite) without significant amount of hydrous minerals such as amphibole, epidote and biotite. The fluid-rich stage might have commenced concomitantly with lower amphibolite-facies diaphthoresis and persisted all the way towards the near-surface environment. The product of this stage is characterized by plentiful hydrous and volatile-bearing phases. The dissemination-type rutile mineralizations in eclogites might have formed by preferential shearing-induced pressure solution of gangue minerals at the fluid-bearing stage. The accompanying vein rutile was precipitated from fluids of this stage after local transport and concentration, and may hence represent proximal mobilization of titanium from the eclogite. Therefore, rutile veins can be used as an exploration indicator for dissemination-type rutile deposits. [source]


    Metamorphism of the Basement of the Qilian Fold Belt in the Minhe-Ledu Area, Qinghai Province, NW China

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2002
    TSAI Chinglang
    Abstract, The basement of the central Qilian fold belt exposed along the Minhe-Ledu highway consists of psammitic schists, metabasitic rocks, and crystalline limestone. Migmatitic rocks occur sporadically among psammitic schist and metabasitic rocks. The mineral assemblage of psammitic schist is muscovite + biotite + feldspar + quartz tourmaline titanite sillimanite and that of metabasitic rocks is amphibole + plagioclase + biotite apatite magnetite pyroxene garnet quartz. The migmatitic rock consists of leucosome and restite of various volume proportions; the former consists of muscovite + alkaline feldspar + quartz garnet plagioclase while the latter is either fragments of psammitic schist or those of metabasitic rock. The crystalline limestone consists of calcite that has been partly replaced by olivine. The olivine was subsequently altered to serpentine. Weak deformations as indicated by cleavages and fractures were imposed prominently on the psammitic schists, occasionally on metabasitic rocks, but not on migmatitic rocks. The basement experienced metamorphism up to temperature 606,778C and pressure 4.8,6.1 kbar (0.48,0.61 GPa), equivalent to amphibolite-granulite facies. The peak of the metamorphism is marked by a migmatization which occurred at several localities along the studied route 587-535 Ma ago. The basement also recorded a retrograde metamorphism of greenschist facies, during which biotite, garnet, amphibole, and pyroxene were partly altered to chlorite. [source]


    Niches of the pre-photosynthetic biosphere and geologic preservation of Earth's earliest ecology

    GEOBIOLOGY, Issue 2 2007
    NORMAN H. SLEEP
    ABSTRACT The tree of terrestrial life probably roots in non-photosynthetic microbes. Chemoautotrophs were the first primary producers, and the globally dominant niches in terms of primary productivity were determined by availability of carbon dioxide and hydrogen for methanogenesis and sulfite reduction. Methanogen niches were most abundant where CO2 -rich ocean water flowed through serpentinite. Black smoker vents from basalt supplied comparable amount of H2. Hydrogen from arc volcanoes supported a significant methanogenic niche at the Earth's surface. SO2 from arc volcanoes reacted with organic matter and hydrogen, providing a significant surface niche. Methane ascended to the upper atmosphere where photolysis produced C-rich haze and CO, and H escaped into space. The CO and C-rich haze supported secondary surface niches. None of these ecologies were bountiful; less than 1% of the CO2 vented by ridge axes, arcs, and metamorphism became organic matter before it was buried in carbonate. In contrast, a photosynthetic biosphere leaves copious amounts of organic carbon, locally concentrated in sediments. Black shales are a classic geologic biosignature for photosynthesis that can survive subduction and high-grade metamorphism. [source]


    Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism

    GEOFLUIDS (ELECTRONIC), Issue 1-2 2010
    S. E. INGEBRITSEN
    Geofluids (2010) 10, 193,205 Abstract The variation of permeability with depth can be probed indirectly by various means, including hydrologic models that use geothermal data as constraints and the progress of metamorphic reactions driven by fluid flow. Geothermal and metamorphic data combine to indicate that mean permeability (k) of tectonically active continental crust decreases with depth (z) according to log k , ,14,3.2 log z, where k is in m2 and z in km. Other independently derived, crustal-scale k,z relations are generally similar to this power-law curve. Yet there is also substantial evidence for local-to-regional-scale, transient, permeability-generation events that entail permeabilities much higher than these mean k,z relations would suggest. Compilation of such data yields a fit to these elevated, transient values of log k , ,11.5,3.2 log z, suggesting a functional form similar to that of tectonically active crust, but shifted to higher permeability at a given depth. In addition, it seems possible that, in the absence of active prograde metamorphism, permeability in the deeper crust will decay toward values below the mean k,z curves. Several lines of evidence suggest geologically rapid (years to 103 years) decay of high-permeability transients toward background values. Crustal-scale k,z curves may reflect a dynamic competition between permeability creation by processes such as fluid sourcing and rock failure, and permeability destruction by processes such as compaction, hydrothermal alteration, and retrograde metamorphism. [source]


    Composition and evolution of fluids during skarn development in the Monte Capanne thermal aureole, Elba Island, central Italy

    GEOFLUIDS (ELECTRONIC), Issue 3 2008
    F. ROSSETTI
    Abstract We describe the chemistry of the fluids circulating during skarn formation by focusing on fluids trapped in calcsilicate minerals of the inner thermal aureole of the Late Miocene Monte Capanne intrusion of western Elba Island (central Italy). Primary, CH4 -dominant, C-O-H-S-salt fluid inclusions formed during prograde growth of the main skarn-forming mineral phases: grossular/andradite and vesuvianite. The variable phase ratios attest to heterogeneous entrapment of fluid, with co-entrapment of an immiscible hydrocarbon,brine mixture. Chemical elements driving skarn metasomatism such as Na, K, Ca, S and Cl, Fe and Mn were dominantly partitioned into the circulating fluid phase. The high salinity (apparent salinity between 58 and 70 wt% NaCl eq.) and the C-component of the fluids are interpreted as evidence for a composite origin of the skarn-forming fluids that involves both fluids derived from the crystallizing intrusion and contributions from metamorphic devolatilization. Oxidation of a Fe-rich brine in an environment dominated by fluctuation in pressure from lithostatic to hydrostatic conditions (maintained by active crack-sealing) contributed to skarn development. Fluid infiltration conformed to a geothermal gradient of about 100C km,1, embracing the transition from high-temperature contact metamorphism and fluid-assisted skarn formation (at ca 600C) to a barren hydrothermal stage (at ca 200C). [source]


    The mechanism of fluid infiltration in peridotites at Almklovdalen, western Norway

    GEOFLUIDS (ELECTRONIC), Issue 3 2002
    O. Kostenko
    Abstract A major Alpine-type peridotite located at Almklovdalen in the Western Gneiss Region of Norway was infiltrated by aqueous fluids at several stages during late Caledonian uplift and retrogressive metamorphism. Following peak metamorphic conditions in the garnet,peridotite stability field, the peridotite experienced pervasive fluid infiltration and retrogression in the chlorite,peridotite stability field. Subsequently, the peridotite was infiltrated locally by nonreactive fluids along fracture networks forming pipe-like structures, typically on the order of 10 m wide. Fluid migration away from the fractures into the initially impermeable peridotite matrix was facilitated by pervasive dilation of grain boundaries and the formation of intragranular hydrofractures. Microstructural observations of serpentine occupying the originally fluid-filled inclusion space indicate that the pervasively infiltrating fluid was characterized by a high dihedral angle (, > 60) and ,curled up' into discontinuous channels and fluid inclusion arrays following the infiltration event. Re-equilibration of the fluid phase topology took place by growth and dissolution processes driven by the excess surface energy represented by the ,forcefully' introduced external fluid. Pervasive fluid introduction into the peridotite reduced local effective stresses, increased the effective grain boundary diffusion rates and caused extensive recrystallization and some grain coarsening of the infiltrated volumes. Grain boundary migration associated with this recrystallization swept off abundant intragranular fluid inclusions in the original chlorite peridotite, leading to a significant colour change of the rock. This colour change defines a relatively sharp front typically located 1,20 cm away from the fractures where the nonreactive fluids originally entered the peridotite. Our observations demonstrate how crustal rocks may be pervasively infiltrated by fluids with high dihedral angles (, > 60) and emphasize the coupling between hydrofracturing and textural equilibration of the grain boundary networks and the fluid phase topology. [source]


    Ophiolite-bearing mlanges in southern Italy

    GEOLOGICAL JOURNAL, Issue 2 2009
    Luigi Tortorici
    Abstract In southern Italy two ophiolite-bearing belts, respectively involved in the Adria-verging southern Apennines and in the Europe-verging thrust belt of the northern Calabrian Arc, represent the southward extension of the northern Apennines and of ,Alpine Corsica' ophiolitic units, respectively. They form two distinct suture zones, which are characterized by different age of emplacement and opposite sense of tectonic transport. The ophiolite-bearing units of the southern Apennines are represented by broken formation and tectonic mlange associated with remnants of a well-developed accretionary wedge emplaced on top of the Adria continental margin, with an overall NE direction of tectonic transport. These units consist of a Cretaceous-Oligocene matrix, which includes blocks of continental-type rocks and ophiolites with remnants of their original Upper Jurassic to Lower Cretaceous pelagic cover. The innermost portion of the accretionary wedge is represented by a polymetamorphosed and polydeformed tectonic units that underwent a Late Oligocene high pressure/low temperature (HP/LT) metamorphism. The northern Calabria ophiolitic-belt is indeed composed of west-verging tectonic slices of oceanic rocks which, embedded between platform carbonate units of a western continental margin at the bottom and the basement crystalline nappes of the Calabrian Arc at the top, are affected by a Late Eocene-Early Oligocene HP/LT metamorphism. The main tectonic features of these two suture zones suggest that they can be interpreted as the result of the closure of two branches of the western Neotethys separated by a continental block that includes the crystalline basement rocks of the Calabrian Arc. We thus suggest that the north-east verging southern Apennine suture constituted by a well-developed accretionary wedge is the result of the closure of a large Late Jurassic-Early Cretaceous oceanic domain (the Ligurian Ocean) located between the African (the Adria Block) and European continental margins. The northern Calabria suture derives indeed from the deformation of a very narrow oceanic-floored basin developed during the Mesozoic rifting stages within the European margin separating a small continental ribbon (Calabrian Block) from the main continent. Copyright 2008 John Wiley & Sons, Ltd. [source]


    Amphibolite and blueschist,greenschist facies metamorphism, Blue Mountain inlier, eastern Jamaica

    GEOLOGICAL JOURNAL, Issue 5 2008
    Richard N. Abbott Jr
    Abstract Cretaceous (possibly older) metamorphic rock occurs mainly in the Blue Mountain inlier in eastern Jamaica. Fault-bounded blocks reveal two styles of metamorphism, Westphalia Schist (upper amphibolite facies) and Mt. Hibernia Schist (blueschist (BS),greenschist (GS) facies). Both Westphalia Schist and Mt. Hibernia Schist preserve detailed records of retrograde P,T paths. The paths are independent, but consistent with different parts of the type-Sanbagawa metamorphic facies series in Japan. For each path, phase relationships and estimated P,T conditions support a two-stage P,T history involving residence at depth, followed by rapid uplift and cooling. Conditions of residence vary depending on the level in a tectonic block. For the critical mineral reaction (isograd) in Westphalia Schist, conditions were P ,7.5,kbars, T ,600C (upper amphibolite facies). Retrograde conditions in Hibernia Schist were P,=,2.6,3.0,kbars, T,=,219,237C for a(H2O),=,0.8,1.0 (GS facies). Mt. Hibernia Schist may represent a volume of rock that was separated and uplifted at an early time from an otherwise protracted P,T path of the sort that produced the Westphalia Schist. Reset K,Ar ages for hornblende and biotite indicate only that retrograde metamorphism of Westphalia Schist took place prior to 76.5,Ma (pre-Campanian). Uplift may have commenced with an Albian,Aptian (,112,Ma) orogenic event. Copyright 2008 John Wiley & Sons, Ltd. [source]


    High-pressure mineral assemblage in granitic rocks from continental units, Alpine Corsica, France

    GEOLOGICAL JOURNAL, Issue 1 2006
    Alessandro Malasoma
    Abstract The Popolasca,Francardo area of northern Corsica contains an assemblage of continental tectonic units affected by an Alpine deformation. In one of these units, Unit II, previously regarded as weakly metamorphosed, a metamorphic mineral assemblage characterized by sodic amphibole, phengite, quartz, albite and epidote has been found in an aplite dyke that cuts the dominant granitoids. Peak-metamorphic temperature and pressure conditions of 300,370C and 0.50,0.80,GPa, respectively, have been determined. This finding indicates that a continuous belt of continental slices, characterized by high-pressure, low-temperature metamorphism of Tertiary age, extends from the Tenda Massif in the north to the Corte area in the south, thus placing additional constraints on the tectonic evolution of Alpine Corsica. Copyright 2005 John Wiley & Sons, Ltd. [source]


    The syn-collisional Danac,obas, biotite leucogranite derived from the crustal thickening in central Anatolia (K,r,kkale), Turkey

    GEOLOGICAL JOURNAL, Issue 5 2005
    bel Tatar
    Abstract The Behrekda, composite batholith, which crops out as a huge N,S-trending plutonic body in central Anatolia, Turkey, consists of five mappable granitoid units of Late Cretaceous age. They are (1) the S-type, peraluminous Danac,obas, biotite leucogranite, (2) the I-type, hybrid, metaluminous Konur K-feldspar megacrystic quartz monzonite, (3) the mafic A-type, alkaline Kizdede monzogabbro, (4) the felsic A-type, alkaline Hasandede quartz syenite/monzonite, and (5) the M-type, low-K tholeiitic Yeniky tonalite. The S-type Danac,obas, biotite leucogranite constitutes the oldest intrusive unit in the mapped area. It has coarse- to medium-crystalline texture and consists of quartz, orthoclase and plagioclase, with variable amounts of biotite and accessory minerals, including apatite, zircon and opaque phases. K-Ar age dating of biotite separates, yields cooling ages of 69.1,,1.42 and 71.5,,1.45,Ma for the Danac,obas, biotite leucogranite. Major-element, trace-element, and rare-earth element geochemical data suggest an exclusively peraluminous, S-type, high-K calc-alkaline, upper crustal genesis for the Danac,obas, biotite leucogranite. This petrogenetic interpretation is also supported by oxygen-isotope data from quartz separates, with a mean value of 10.58,,0.11 , of ,18OVSMOW value. The magma source of the Danac,obas, biotite leucogranite is proposed to have been a syn-collisional leucogranitic melt derived by anatexis of high-grade metasediments of the Central Anatolian Crystalline Complex during peak conditions of regional metamorphism. This metamorphic event was induced by crustal thickening which was a result of Late Cretaceous collision between the Eurasia and Tauride,Anatolide Platform along the ,zmir,Ankara,Erzincan Suture Zone in central Anatolia. Copyright 2005 John Wiley & Sons, Ltd. [source]


    Fluid evolution in base-metal sulphide mineral deposits in the metamorphic basement rocks of southwest Scotland and Northern Ireland

    GEOLOGICAL JOURNAL, Issue 1 2005
    Martin Baron
    Abstract The Dalradian and Ordovician,Silurian metamorphic basement rocks of southwest Scotland and Northern Ireland host a number of base-metal sulphide-bearing vein deposits associated with kilometre-scale fracture systems. Fluid inclusion microthermometric analysis reveals two distinct fluid types are present at more than half of these deposits. The first is an H2O,CO2,salt fluid, which was probably derived from devolatilization reactions during Caledonian metamorphism. This stage of mineralization in Dalradian rocks was associated with base-metal deposition and occurred at temperatures between 220 and 360C and pressures of between 1.6 and 1.9,kbar. Caledonian mineralization in Ordovician,Silurian metamorphic rocks occurred at temperatures between 300 and 360C and pressures between 0.6 and 1.9,kbar. A later, probably Carboniferous, stage of mineralization was associated with base-metal sulphide deposition and involved a low to moderate temperature (Th 70 to 240C), low to moderate salinity (0 to 20,wt% NaCl eq.), H2O,salt fluid. The presence of both fluids at many of the deposits shows that the fractures hosting the deposits acted as long-term controls for fluid migration and the location of Caledonian metalliferous fluids as well as Carboniferous metalliferous fluids. Copyright 2004 John Wiley & Sons, Ltd. [source]


    The Geysers geothermal field: results from shear-wave splitting analysis in a fractured reservoir

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2005
    Maya Elkibbi
    SUMMARY Clear shear-wave splitting (SWS) is observed in 1757 high signal-to-noise ratio microearthquake seismograms recorded by two high density seismic arrays in the NW and the SE Geysers geothermal fields in California. The Geysers reservoir rocks within the study area are largely composed of lithic, low-grade metamorphism, well-fractured metagraywackes which commonly lack schistosity, warranting the general assumption that shear-wave splitting here is induced solely by stress-aligned fracturing in an otherwise isotropic medium. The high quality of observed shear-wave splitting parameters (fast shear-wave polarization directions and time delays) and the generally good data spatial coverage provide an unprecedented opportunity to demonstrate the applicability and limitations of the shear-wave splitting approach to successfully detect fracture systems in the shallow crust based on SWS field observations from a geothermal reservoir. Results from borehole stations in the NW Geysers indicate that polarization orientations range between N and N60E; while in the SE Geysers, ground surface stations show polarization directions that are generally N5E, N35E-to-N60E, N75E-to-N85E, and N20W-to-N55W. Crack orientations obtained from observed polarization orientations are in good agreement with independent field evidence, such as cracks in geological core data, tracer tests, locally mapped fractures, and the regional tectonic setting. Time delays range typically between 8 and 40 ms km,1, indicating crack densities well within the norm of fractured reservoirs. The sizeable collection of high resolution shear-wave splitting parameters shows evidence of prevalent vertical to nearly vertical fracture patterns in The Geysers field. At some locations, however, strong variations of SWS parameters with ray azimuth and incident angle within the shear-wave window of seismic stations indicate the presence of more complex fracture patterns in the subsurface. [source]


    Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity

    HYDROLOGICAL PROCESSES, Issue 18 2004
    Martin Schneebeli
    Abstract Temperature gradient metamorphism is one of the dominant processes changing the structure of natural dry snow. The structure of snow regulates the thermal and mechanical properties. Physical models and numerical simulations of the evolution of the snow cover require a thorough understanding of the interplay between structure and physical properties. The structure of snow and the heat conductivity were measured simultaneously without disturbance in a miniature snow breeder. The structure was measured by microtomography, and heat conductivity by measuring heat fluxes and temperatures. A temperature gradient from 25 to 100 K m,1 was applied to the snow. The snow density range of the samples varied from 150 to 500 kg m,3. The density in the observed volume remained constant during the experiments under temperature gradient conditions. The structure was analysed with respect to the size of typical ice structures and air pores, specific surface area, curvature and anisotropy of the ice matrix. The temporal changes in structure and heat conductivity are compared. The heat conductivity changed by as much as twice its initial value, caused by changes in structure and texture, but not due to changes in density. This shows the enormous importance of structure in the evolution of the heat conductivity. The observed changes are not in good agreement with the current understanding of the metamorphic process, because heat conductivity increased during temperature gradient metamorphism, instead of the expected decrease due to a shrinking of the bonds. We also observed a plateau in the evolution of the heat conductivity coefficient, which indicates a quasi-steady state of the structural evolution with respect to thermophysical properties of snow. Copyright 2004 John Wiley & Sons, Ltd. [source]


    Reference genes identified in the silkworm Bombyx mori during metamorphism based on oligonucleotide microarray and confirmed by qRT-PCR

    INSECT SCIENCE, Issue 5 2008
    Gen-Hong Wang
    Abstract Gene expression quantification at mRNA level is very important for post-genomic studies, as gene expression level is the reflection of the special biological function of the target gene. Methods used for gene expression quantification, such as microarray or quantitative real-time polymerase chain reaction (qRT-PCR), require stable expressed reference genes. Thus, finding suitable control genes is essential for gene quantification. In this study, a genome-wide survey of reference genes during metamorphism was performed on silkworm Bombyx mori. Twelve genes were chosen as putative reference genes based on a whole genome oligonucleotide microarray normalized by external controls. Then, qRT-PCR was employed for further validation and selection of potential reference gene candidates. The results were analyzed, and stable genes were selected using geNorm 3.4 and NormFinder software. Finally, considering factors from every aspect, translation initiation factor 4A, translation initiation factor 3 subunit 4, and translation initiation factor 3 subunit 5 (represented by sw22934, swl4876, and swl3956) were selected as reliable internal controls across the examined developmental stages, while cytoplasmic actin (sw22671), the commonly used reference gene in a previous study was shown to vary drastically throughout the examined developmental stages. For future research, we recommend the use of the geometric mean of those three stable reference genes as an accurate normalization factor for data normalization of different developmental stages during metamorphism. [source]


    SHRIMP U,Pb zircon chronology of ultrahigh-temperature spinel,orthopyroxene,garnet granulite from South Altay orogenic belt, northwestern China

    ISLAND ARC, Issue 3 2010
    Zilong Li
    Abstract Diagnostic mineral assemblages, mineral compositions and zircon SHRIMP U,Pb ages are reported from an ultrahigh-temperature (UHT) spinel,orthopyroxene,garnet granulite (UHT rock) from the South Altay orogenic belt of northwestern China. This Altay orogenic belt defines an accretionary belt between the Siberian and Kazakhstan,Junggar Plates that formed during the Paleozoic. The UHT rock examined in this study preserves both peak and retrograde metamorphic assemblages and microstructures including equilibrium spinel + quartz, and intergrowth of orthopyroxene, spinel, sillimanite, and cordierite formed during decompression. Mineral chemistry shows that the spinel coexisting with quartz has low ZnO contents, and the orthopyroxene is of high alumina type with Al2O3 contents up to 9.3 wt%. The peak temperatures of metamorphism were >950C, consistent with UHT conditions, and the rocks were exhumed along a clockwise P,T path. The zircons in this UHT rock display a zonal structure with a relict core and metamorphic rim. The cores yield bimodal ages of 499 8 Ma (7 spots), and 855 Ma (2 spots), with the rounded clastic zircons having ages with 490,500 Ma. Since the granulite was metamorphosed at temperatures >900C, exceeding the closure temperature of U,Pb system in zircon, a possible interpretation is that the 499 8 Ma age obtained from the largest population of zircons in the rock marks the timing of formation of the protolith of the rock, with the zircons sourced from a ,500 Ma magmatic provenance, in a continental margin setting. We correlate the UHT metamorphism with the northward subduction of the Paleo-Asian Ocean and associated accretion-collision tectonics of the Siberian and Kazakhstan,Junggar Plates followed by rapid exhumation leading to decompression. [source]


    Large-scale folding in the Asemi-gawa region of the Sanbagawa Belt, southwest Japan

    ISLAND ARC, Issue 2 2010
    Hiroshi Mori
    Abstract The Sanbagawa Belt generally shows higher metamorphic grade at higher structural levels. This inversion can be interpreted as reflecting an original inverted thermal structure typical of subduction zone environments. However, repetitions in the distribution of the metamorphic zones seen in central Shikoku, Japan, clearly show the original thermal structure has been affected by deformation after the peak of metamorphism. This repetition has been attributed to both the action of tectonic discontinuities and regional folding. It is important to distinguish between these two interpretations to determine the extent to which the original subduction zone sequence is preserved. Analyses of lithological and structural data reveal the presence of a large-scale post-metamorphic fold in the central part of the highest grade region. This folding has an axis that coincides with the thermal axis implied by the distribution of the metamorphic zonation, suggesting the repetition of metamorphic zones in this area can be accounted for by folding without the need for major discontinuities. [source]


    Anisotropy of magnetic susceptibility and petrofabric studies in the Garhwal synform, Outer Lesser Himalaya: Evidence of pop-up klippen

    ISLAND ARC, Issue 3 2009
    Upasana Devrani
    Abstract Geological field, petrographic, and anisotropy of magnetic susceptibility studies help in understanding the evolutionary history of the Garhwal synform that lies in the western Outer Lesser Himalaya. Orientations of the magnetic susceptibility axes reveal large variations at short distances as a result of superimposed deformation, and predominant stress conditions favorable for normal faulting. Rocks forming the outer limbs of the Garhwal Synform are metamorphosed up to the lower greenschist facies. The metamorphic grade increases to chlorite zone in the inner limb and the core is characterized by chlorite,biotite to garnet zones. The different grades of metamorphism are separated by thrusts and the structure is described as a pop-up klippen. [source]


    Metamorphic and cooling history of the Shimanto accretionary complex, Kyushu, Southwest Japan: Implications for the timing of out-of-sequence thrusting

    ISLAND ARC, Issue 4 2008
    Hidetoshi Hara
    Abstract Illite crystallinity, K,Ar dating of illite, and fission-track dating of zircon are analyzed in the hanging wall (Sampodake unit) and footwall (Mikado unit) of a seismogenic out-of-sequence thrust (Nobeoka thrust) within the Shimanto accretionary complex of central Kyushu, southwest Japan. The obtained metamorphic temperatures, and timing of metamorphism and cooling, reveal the tectono-metamorphic evolution of the complex, and related development of the Nobeoka thrust. Illite crystallinity data indicate that the Late Cretaceous Sampodake unit was metamorphosed at temperatures of around 300 to 310C, while the Middle Eocene Mikado unit was metamorphosed at 260 to 300C. Illite K,Ar ages and zircon fission-track ages constrain the timing of metamorphism of the Sampodake unit to the early Middle Eocene (46 to 50 Ma, mean = 48 Ma). Metamorphism of the Mikado unit occurred no earlier than 40 Ma, which is the youngest depositional age of the unit. The Nobeoka thrust is inferred to have been active during about 40 to 48 Ma, as the Sampodake unit started its post metamorphic cooling after 48 Ma and was thrust over the Mikado unit at about 40 Ma along the Nobeoka thrust. These results indicate that the Nobeoka thrust was active for more than 10 million years. [source]


    Thematic Section: Fluids and metamorphism

    ISLAND ARC, Issue 1 2007
    Toru Takeshita
    No abstract is available for this article. [source]


    Geology of the summit limestone of Mount Qomolangma (Everest) and cooling history of the Yellow Band under the Qomolangma detachment

    ISLAND ARC, Issue 4 2005
    Harutaka Sakai
    Abstract Newly discovered peloidal limestone from the summit of Mount Qomolangma (Mount Everest) contains skeletal fragments of trilobites, ostracods and crinoids. They are small pebble-sized debris interbedded in micritic bedded limestone of the Qomolangma Formation, and are interpreted to have been derived from a bank margin and redeposited in peri-platform environments. An exposure of the Qomolangma detachment at the base of the first step (8520 m), on the northern slope of Mount Qomolangma was also found. Non-metamorphosed, strongly fractured Ordovician limestone is separated from underlying metamorphosed Yellow Band by a sharp fault with a breccia zone. The 40Ar,39Ar ages of muscovite from the Yellow Band show two-phase metamorphic events of approximately 33.3 and 24.5 Ma. The older age represents the peak of a Barrovian-type Eo-Himalayan metamorphic event and the younger age records a decompressional high-temperature Neo-Himalayan metamorphic event. A muscovite whole-rock 87Rb,86Sr isochron of the Yellow Band yielded 40.06 0.81 Ma, which suggests a Pre-Himalayan metamorphism, probably caused by tectonic stacking of the Tibetan Tethys sediments in the leading margin of the Indian subcontinent. Zircon and apatite grains, separated from the Yellow Band, gave pooled fission-track ages of 14.4 0.9 and 14.4 1.4 Ma, respectively. These new chronologic data indicate rapid cooling of the hanging wall of the Qomolangma detachment from approximately 350C to 130C during a short period (15.5,14.4 Ma). [source]


    Transpressional tectonics of the Mineoka Ophiolite Belt in a trench,trench,trench-type triple junction, Boso Peninsula, Japan

    ISLAND ARC, Issue 4 2005
    Ryota Mori
    Abstract Structures developed in metamorphic and plutonic blocks that occur as knockers in the Mineoka Ophiolite Belt in the Boso Peninsula, central Japan, were analyzed. The aim was to understand the incorporation processes of blocks of metamorphic and plutonic rocks with an arc signature into the serpentinite mlange of the Mineoka Ophiolite Belt in relation to changes in metamorphic conditions during emplacement. Several stages of deformation during retrogressive metamorphism were identified: the first faulting stage had two substage shearing events (mylonitization) under ductile conditions inside the crystalline blocks in relatively deeper levels; and the second stage had brittle faulting and brecciation along the boundaries between the host serpentinite bodies in relatively shallower levels (zeolite facies). The first deformation occurred during uplift before emplacement. The blocks were intensively sheared by the first deformation event, and developed numerous shear planes with spacing of a few centimeters. The displacement and width of each shear plane were a few centimeters and a few millimeters, respectively, at most. In contrast, the fault zone of the second shearing stage reached a few meters in width and developed during emplacement of the Mineoka Ophiolite. Both stages occurred under a right-lateral transpressional regime, in which thrust-faulting was associated with strike-slip faulting. Such displacement on an outcrop scale is consistent with the present tectonics of the Mineoka Belt. This implies that the same tectonic stress has been operating in the Boso trench,trench,trench-type triple junction area in the northwest corner of the Pacific since the emplacement of the Mineoka Ophiolite. The Mineoka Ophiolite Belt must have worked as a forearc sliver fault during the formation of a Neogene accretionary prism further south. [source]


    Tectonic accretion of a subducted intraoceanic remnant arc in Cretaceous Hokkaido, Japan, and implications for evolution of the Pacific northwest

    ISLAND ARC, Issue 4 2005
    Hayato Ueda
    Abstract An accretionary complex, which contains fragments of a remnant island arc, was newly recognized in the Cretaceous accretionary terranes in Hokkaido, Japan. It consists of volcanics, volcanic conglomerate, intermediate to ultramafic intrusive rocks with island-arc affinity including boninitic rocks, accompanied by chert and deformed terrigenous turbidites. Compared with the results of modern oceanic surveys, the preserved sequence from island-arc volcanics to chert, via reworked volcanics, is indicative of intraoceanic remnant arc, because the sequence suggests an inactive arc isolated within a pelagic environment before its accretion. The age of a subducting oceanic crust can be discontinuous before and after a remnant-arc subduction, resulting in abrupt changes in accretion style and metamorphism, as seen in Cretaceous Hokkaido. Subduction of such an intraoceanic remnant arc suggests that the subducted oceanic plate in the Cretaceous was not an extensive oceanic plate like the Izanagi and/or Kula Plates as previously believed by many authors, but a marginal basin plate having an arc,back-arc system like the present-day Philippine Sea Plate. [source]


    Prograde eclogites from the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt, central Shikoku, southwest Japan

    ISLAND ARC, Issue 3 2005
    Yasuo Miyagi
    Abstract Prograde eclogites occur in the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt of central Shikoku. The Tonaru mass is considered to be a metamorphosed layered gabbro, and occurs as a large tectonic block (approximately 6.5 km 1 km) in a high-grade portion of the Sambagawa schists. The Tonaru mass experienced high- P/low- T prograde metamorphism from the epidote-blueschist facies to the eclogite facies prior to its emplacement into the Sambagawa schists. The estimated P,T conditions are T = 300,450C and P = 0.7,1.1 GPa for the epidote-blueschist facies, and the peak P,T conditions for the eclogite facies are T = 700,730C and P , 1.5 GPa. Following the eclogite facies metamorphism, the Tonaru mass was retrograded to the epidote amphibolite facies. It subsequently underwent additional prograde Sambagawa metamorphism, together with the surrounding Sambagawa schists, until the conditions of the oligoclase,biotite zone were reached. The high- P/low- T prograde metamorphism of the eclogite facies in the Tonaru mass and other tectonic blocks show similar steep dP/dT geothermal gradients despite their diverse peak P,T conditions, suggesting that these tectonic blocks reached different depths in the subduction zone. The individual rocks in each metamorphic zone of the Sambagawa schists also recorded steep dP/dT geothermal gradients during the early stages of the Sambagawa prograde metamorphism, and these gradients are similar to those of the eclogite-bearing tectonic blocks. Therefore, the eclogite-bearing tectonic blocks reached greater depths in the subduction zone than the Sambagawa schists. All the tectonic blocks were ultimately emplaced into the hanging wall side of the later-subducted Sambagawa high-grade schists during their exhumation. [source]


    Metamorphism and metamorphic K,Ar ages of the Mesozoic accretionary complex in Northland, New Zealand

    ISLAND ARC, Issue 3 2004
    Yujiro Nishimura
    Abstract A southwest dipping Mesozoic accretionary complex, which consists of tectonically imbricated turbiditic mudstone and sandstone, hemipelagic siliceous mudstone, and bedded cherts and basaltic rocks of pelagic origin, is exposed in northern North Island, New Zealand. Interpillow limestone is sometimes contained in the basaltic rocks. The grade of subduction-related metamorphism increases from northeast to southwest, indicating an inverted metamorphic gradient dip. Three metamorphic facies are recognized largely on the basis of mineral parageneses in sedimentary and basaltic rocks: zeolite, prehnite-pumpellyite and pumpellyite-actinolite. From the apparent interplanar spacing d002 data for carbonaceous material, which range from 3.642 to 3.564 , the highest grade of metamorphism is considered to have attained only the lowermost grade of the pumpellyite-actinolite facies for which the highest temperature may be approximately 300C. Metamorphic white mica K,Ar ages are reported for magnetic separates and <2 m hydraulic elutriation separates from 27 pelitic and semipelitic samples. The age data obtained from elutriation separates are approximately 8 m.y. younger, on average, than those from magnetic separates. The age difference is attributed to the possible admixture of nonequilibrated detrital white mica in the magnetic separates, and the age of the elutriation separates is considered to be the age of metamorphism. If the concept, based on fossil evidence, of the subdivision of the Northland accretionary complex into north and south units is accepted, then the peak age of metamorphism in the north unit is likely to be 180,130 Ma; that is, earliest Middle Jurassic to early Early Cretaceous, whereas that in the south unit is 150,130 Ma; that is, late Late Jurassic to early Early Cretaceous. The age cluster for the north unit correlates with that of the Chrystalls Beach,Taieri Mouth section (uncertain terrane), while the age cluster for the south unit is older than that of the Younger Torlesse Subterrane in the Wellington area, and may be comparable with that of the Nelson and Marlborough areas (Caples and Waipapa terranes). [source]


    Ultrahigh-pressure metamorphic records hidden in zircons from amphibolites in Sulu Terrane, eastern China

    ISLAND ARC, Issue 3 2003
    Fulai Liu
    Abstract The amphibolites occur sporadically as thin layers and blocks throughout the Sulu Terrane, eastern China. All analyzed amphibolite from outcrop and drill cores from prepilot drill hole CCSD-PP1 and CCSD-PP2, Chinese Continental Scientific Drilling Project in the Sulu Terrane, are retrograded eclogites overprinted by amphibolite-facies retrograde metamorphism, with characteristic mineral assemblages of amphibole + plagioclase + epidote quartz biotite ilmenite titanite. However, coesite and coesite-bearing ultrahigh-pressure (UHP) mineral assemblages are identified by Raman spectroscopy and electron microprobe analysis as inclusions in zircons separated from these amphibolites. In general, coesite and other UHP mineral inclusions are preserved in the cores and mantles of zircons, whereas quartz inclusions occur in the rims of the same zircons. The UHP mineral assemblages consist mainly of coesite + garnet + omphacite + rutile, coesite + garnet + omphacite, coesite + garnet + omphacite + phengite + rutile + apatite, coesite + omphacite + rutile and coesite + magnesite. Compositions of analyzed mineral inclusions are very similar to those of matrix minerals from Sulu eclogites. These UHP mineral inclusion assemblages yield temperatures of 631,780C and pressures of ,2.8 103 MPa, representing the P,T conditions of peak metamorphism of these rocks, which are consistent with those (T = 642,726C; P , 2.8 103 MPa) deduced from adjacent eclogites. These data indicate that the amphibolites are the retrogressive products of UHP eclogites. [source]